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Abstract
Purpose of Review  Climate warming affects both nutrient availability and plant nutrient requirements, with a potential altera-
tion of nutrient limitation to the CO2 fertilization effect on net primary productivity (NPP) and carbon (C) sinks, but the 
overall impact remains poorly understood. Based on a literature review, we synthesized the current understanding of climate 
warming-induced changes in (i) availability, (ii) demands, and (iii) limitation of the nutrients nitrogen (N) and phosphorus 
(P) in global forest biomes as well as (iv) how climate warming alters nutrient constraints on CO2 fertilization.
Recent Findings  Climate warming generally increases nutrient availability via accelerating nutrient cycling but this effect 
largely varies between different forest biomes, resulting in a considerable increase in N availability in temperate and boreal 
forests but a weak P availability increase in tropical forests due to a depleted soil P pool. Climate warming likely causes an 
increase of NPP and nutrient demands in thermal-limited boreal and temperate forests, but it can result in a reduction of 
growth and nutrient demand in forests with an exceedance of optimal growth temperatures (e.g. some of tropical forests) and/
or warming-induced moisture deficiency. Overall, climate warming tends to alleviate N limitation in boreal and temperate 
forests to support NPP in response to rising CO2 concentrations. In contrast, climate warming combined with CO2 fertiliza-
tion will likely strengthen P limitation in tropical forests.
Summary  Warming-induced changes in nutrient limitation can lead to biome-specific responses of NPP to rising atmospheric 
CO2 concentrations. Our review highlights the role of climate warming-induced changes in nutrient availability, demand, 
and limitation in constraining biogeochemical feedback to future CO2 enrichment.

Keywords  Nutrient availability · Nitrogen limitation · Phosphorus limitation · Nutrient limitation · Climate warming · 
Moisture deficiency · CO2 fertilization
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Introduction

Global forests account for a major proportion of global land 
carbon (C) sinks and thus play a key role in the biogeo-
chemical feedback to climate change [1]. Changes in future 
C sinks in global forests are largely driven by a CO2 fertiliza-
tion effect on net primary productivity (NPP), but the fore-
casted C sinks along with CO2 enrichment remain contro-
versial due to the potential constraint of nutrient limitation 
[2–4]. Especially the availability of the nutrients nitrogen 
(N) and phosphorus (P) widely limit plant growth in global 
terrestrial forests and thereby constrain the magnitude of 
NPP responses to rising CO2 and climate warming [5–7]. 
Rapid climate warming has occurred in the past half-century 
and is projected to continue along with rising CO2 concen-
trations [8]. Climate warming may significantly alter nutrient 
cycling and, thus, modify the nutrient constraint on future 
NPP and C sink capacity in response to future CO2 enrich-
ment (Fig. 1). However, the warming-mediated changes in 
nutrient availability, demand, and limitation as well as their 
effect on future C sinks in response to continuously rising 
CO2 concentrations remain poorly understood.

Climate warming generally accelerates nutrient miner-
alization and consequently increases soil nutrient avail-
ability [9, 10]. Climate warming also stimulates NPP in 
regions with colder climates than the optimal temperature, 
thereby increasing nutrient requirements for faster plant 

growth. In contrast, climate warming may exert negative 
effects on forest growth attributable to enhanced thermal 
stress and water deficiency [11, 12]. Nutrient limitation, 
dependent on the balance of nutrient availability and plant 
nutrient requirements, may change in its strength and spa-
tial distribution with climate warming, but such changes 
remain poorly understood in global forest biomes. Addi-
tionally, nutrient limitation varies across forest biomes 
and likely causes distinct constraints on future responses 
of NPP and C sinks to rising CO2 concentrations [4, 5, 
13]. Research efforts are therefore needed to gain a more 
in-depth understanding of the biome-specific effects of 
climate warming on nutrient limitation.

Covering one-third of the global land area, forests act 
as a large C sink (~ 3.5 Pg C yr−1; [1]) that dominates 
global land C sinks and plays a key role in biogeochemi-
cal feedback to climate change. In this review, we synthe-
size literature to provide a perspective of shifting nutrient 
limitation in major forest biomes under climate warming, 
jointly determined by the changes in nutrient availability 
and nutrient demands by forests (Fig. 1). Furthermore, 
we discuss how the warming-induced changes in nutrient 
limitation affect the response of forest NPP and C seques-
tration to rising atmospheric CO2 concentration across dif-
ferent forest biomes. Considering that N and P limitations 
are widespread in global terrestrial ecosystems [5], we 
limited our review to these primary and most essential 
nutrients for forest growth.

Fig. 1   A conceptual diagram 
summarizing the climate 
warming-induced changes in 
nutrient availability, demands 
and limitations and their poten-
tial effects on nutrient constraint 
on NPP and C sinks in response 
to CO2 enrichment
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Effects of Climate Warming on Nutrient 
Availability

Effects of Climate Warming on Nitrogen Availability

Available N in forest ecosystems comes from both exter-
nal pathways (i.e., biological N fixation, N deposition, and 
weathering of N-containing bedrocks) and internal pathways 
(i.e., plant N resorption and soil mineralization) (Fig. 2a) 
[14–16]. Except for N deposition, climate warming can sig-
nificantly alter four of these five pathways and, thus, change 
the amounts of soil available N for plant growth (Fig. 2b). 
Nitrogen deposition directly increases N availability in forest 
ecosystems and this effect is especially important in hotspot 
regions (e.g., eastern and southern China, Japan, Eastern 
U.S. and Europe) attributable to high levels of anthropogenic 
N emissions from agricultural activities and fossil fuel com-
bustion [17–19]. The level of N deposition mainly depends 
on the amount of reactive N emissions, which are primar-
ily determined by activities in the agricultural, industrial 
and transport sectors, although climate warming slightly 
enhances ammonia (NH3) emissions [20].

Climate warming directly increases N availability via 
accelerating internal N cycling via microbial N minerali-
zation and external N inputs via biological N fixation and 
bedrock weathering (Fig. 2b). Specifically, warmer tem-
perature generally accelerates the decomposition of soil 
organic matter and, thus, increases N availability from soil 
N mineralization [9, 10, 21]. Based on climate-controlled 
chamber experiments using rhizobial and actinorhizal asso-
ciated N-fixing plants from temperate and tropical biomes, 
Bytnerowicz et al. have recently found that biological N 
fixation respond nonlinearly to warmer temperatures with 

a thermal optimum range varying between 29 °C to 37 °C 
across simulated temperate and tropical climates [22]. Addi-
tionally, there is an acclimation of optimal temperatures for 
biological N fixation to growing temperatures especially for 
the tropical symbioses (i.e., higher optimal temperatures at 
higher growing temperatures) [22]. Given a target of global 
warming by ~ 1.5 or 2 °C above pre-industrial levels, future 
climate warming is thus projected to increase the rates of 
biological N fixation in most forest biomes where ambient 
temperatures are lower than corresponding thermal opti-
mums (Fig. 2b) [22–24]. However, a hypothesized thermal 
optimum of 25 °C is currently used in many terrestrial bio-
sphere models and this likely leads to biased predictions of 
future changes (i.e., a decline) in biological N fixation in 
tropical regions with ambient temperature (> 25 °C) above 
the optimum [22, 23].

Although this process has been ignored for a long time, 
the weathering of N-containing parental materials is found 
to be an important external N source, especially in regions 
where soils form from highly N-containing bedrock [14]. 
The rate of weathering can be accelerated under climate 
warming (Fig. 2b) and this acceleration generally results in 
an increase in new N inputs from N-containing bedrocks into 
ecosystems [25]. Furthermore, climate warming-induced 
acceleration of biological N fixing and bedrock weather-
ing may further enhance N mineralization over time [26]. 
Overall, the warming-induced available N increment from 
N mineralization is likely stronger than that from biologi-
cal N fixation and bedrock weathering (Fig. 2b). In con-
trast, empirical evidence suggests that plant N resorption 
decreases significantly with warmer temperatures (Fig. 2b), 
likely due to a tradeoff in response to increasing ecosystem 
N availability under climate warming [27–29].

Fig. 2   External (biological N fixation, bedrock weathering, and N 
deposition) and recycled nitrogen (N) supply (soil N mineralization 
and plant N resorption) in forest ecosystems a and their potential 

responses to future climate warming b. See a more detailed descrip-
tion and relevant references in Section   Effects of Climate Warming 
on Nitrogen Availability
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Effects of Climate Warming on Phosphorus 
Availability

In contrast to N, other essential nutrients (e.g., P, K, Ca, Mg, 
and micronutrients) are mostly characterized by a sedimen-
tary cycle in the absence of a stable gaseous form. These 
nutrients are externally supplied from bedrock weathering 
and atmospheric deposition and internally recycled via soil 
mineralization and plant resorption (Fig. 3a) [15, 30, 31]. 
Among these processes, climate warming can significantly 
alter the rates of bedrock weathering, soil mineralization and 
plant nutrient resorption except for atmospheric deposition 
(Fig. 3b).

Climate warming generally increases P availability by 
accelerating chemical weathering and thus P supply from 
soils [30, 32, 33] and enhancing soil P mineralization by an 
increase in decomposition rates and phosphatase enzyme 
activities [34]. Considering that weathering and mineraliza-
tion depend on the amounts of mineral and organic P sub-
strate, respectively, we expect that the stimulation of climate 
warming to additional P availability by bedrock weather-
ing and soil P mineralization is likely weaker in tropical 
and subtropical forests than in temperate and boreal forests, 
due to highly weathered P-depleted soils [15]. Additionally, 
field studies also suggest that plant P resorption generally 
decreases with warmer temperatures as a tradeoff to acceler-
ated P cycling (Fig. 3b) [35], while this negative effect of 
warmer temperatures on plant P resorption might be weak in 
tropical soils given a depletion in the P pool [15, 36].

Although most studies have been focused on N and P, 
the availability of other nutrients can also limit NPP in 
some cases. For example, potassium (K), calcium (Ca) and 
magnesium (Mg), all have been found to limit (to different 
extents) plant productivity in some terrestrial ecosystems 

and an acceleration of their cycling under climate warm-
ing likely increases the availability of these nutrients given 
a sufficient soil base cation nutrient pool [31, 37–39]. In 
contrast, soil K, Ca and Mg tend to deplete in humid and 
warm regions due to long-term leaching [38, 40] and, there-
fore, climate warming may have limited capacity to increase 
the availability of these nutrients in tropical regions. Future 
research efforts are needed to elucidate how the availability 
of nutrients, other than N and P, changes with climate warm-
ing and whether such changes will cause nutrient imbalance 
and shift in nutrient limitation to forest growth in the future.

Effects of Climate Warming on Plant Nutrient 
Demands

Direct Effects of Climate Warming on Plant Nutrient 
Demands

Climate warming can directly alter the rate of tree growth 
and thus change the requirements of forests for nutrients 
[10]. Plant nutrient demands may show an increase in 
accompany with a growth stimulation, a decrease in accom-
pany with a growth decline or no change without a growth 
response to climate warming (Fig. 4). The effect of climate 
warming on tree growth largely depends on background tem-
perature and water availability. Plant photosynthetic capacity 
and vegetation productivity increase with temperature up 
to an optimum temperature [41] and then decline. Conse-
quently, tree growth response to climate warming shows 
strong spatial heterogeneity within and across terrestrial 
biomes [12, 42, 43].

Climate warming generally stimulates tree growth in 
colder parts of boreal forests (e.g., northeastern Siberia, 

Fig. 3   External (bedrock weathering and P deposition) and recycled 
phosphorus (P) supply (soil P mineralization and plant P resorption) 
in forest ecosystems a and their potential responses to climate warm-

ing b. See a more detailed description and relevant references in Sec-
tion  Effects of Climate Warming on Phosphorus Availability
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Alaska, northeastern Canada, and coastal Scandinavia) and 
alpine forests (e.g., Alps and Tibet) by alleviating cold 
temperature limitation and lengthening the growing season 
[42–44]. Accordingly, accelerated tree growth and biomass 
production increase the biological demands of all essential 
nutrients (e.g., N, P, S, K, Ca, Mg and micronutrients) in 
these forests [45]. Since nutrients are stoichiometrically 
coupled in plants to maintain optimal growth and adapt to 
changing environmental conditions [46, 47], the stimulat-
ing effect of climate warming on forest biomass produc-
tion may further strengthen nutrient coupling among these 
nutrients. In response to increasing nutrient requirements 
for growth, plants may also improve nutrient use efficiency 
via stoichiometric and allometric adjustments [46].

Warmer temperatures may lead to a decline in tree 
growth when exceeding the thermal optimal threshold 
for photosynthetic production [41, 48]. One would thus 
expect lower or even negative impacts of climate warming 
going from boreal towards tropical regions but optimum 
air temperatures of vegetation productivity also increase in 
this direction, as demonstrated by a combination of in situ 
eddy covariance measurements and satellite-derived prox-
ies [41]. Particularly, the optimal growing-season air tem-
perature of gross primary productivity was estimated to 
be on average 20, 22 and 30 ºC in boreal, temperate and 
tropical forests [41]. Air temperatures in global tropical 
and subtropical forests are currently close to the optimum 
values [49] and are projected to exceed them under all 
climate scenarios, thus likely causing widespread negative 
effects on forest growth, while the exceedance of optimal 

temperature will less likely occur in boreal and temperate 
forests [41].

Furthermore, empirical studies also suggest an acclima-
tion of plant photosynthesis and growth to climate warming 
with a shift in the optimum temperature [50–53]. Based on 
multiple datasets of satellite-derived productivity and model 
simulations, a recent study indicates that optimal tempera-
ture for vegetation productivity has increased significantly 
during the past four decades and will show a further increase 
until the end of the twenty-first century [54]. Given an accli-
mation of photosynthesis and a shift of optimum temperature 
with warmer temperatures, boreal trees are found to main-
tain C uptake under simulated climate warming but negative 
effects are prevailing for tropical forests [41, 55]. Neverthe-
less, future research efforts are needed to better understand 
how optimal temperatures for vegetation productivity will 
change under future climate warming and determine the 
growth response to climate warming.

Regardless of temperature limitation, climate warming 
is found to exert negative effects on plant growth when 
moisture deficiency simultaneously increases with warmer 
temperatures [12, 42, 43]. For instance, a global analysis 
of tree growth response to climate change indicates that in 
cold and dry regions climate warming generally exerts nega-
tive effects on tree growth and water deficiency is becoming 
increasingly limiting in boreal forests [42]. As a result, the 
area of temperature-limited forests has been shrinking in 
the context of continuing climate warming [42]. Moreover, 
the effect of climate warming on tree growth in the Eura-
sian boreal forest has been found to shift from positive in 
the northern part to negative in the southern part due to 
increased stress of water deficiency and the area with the 
negative effect of climate warming is expected to expand 
northward and upward in this century [12]. In tropical for-
ests, the temperature-associated increase in atmospheric 
vapour pressure deficit may cause a reduction in photo-
synthesis and productivity [56, 57]. Overall, this climate-
induced increase, or decrease, in productivity implies 
simultaneous changes in nutrient demands in these forest 
ecosystems.

Indirect Effects of Climate Warming on Plant 
Nutrient Demands

Co-occurring plant species in a community generally have 
distinct strategies for nutrient utilization and different 
required amounts of nutrients [58]. Shifts in species com-
position under climate warming may thus alter the nutrient 
demands on an ecosystem scale. Climate change has been 
found to change the distribution of plant species and shift 
the species composition of forest biomes, as evidenced by an 
upward and poleward shift in plant distributions [59–61]. For 
instance, warmer temperatures can lead to a shift in species 

Fig. 4   Direct effects of climate warming on net primary productiv-
ity (NPP) and consequent changes in plant nutrient demands in for-
est ecosystems. There are three possible cases depending on the 
responses of NPP to warmer temperatures
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composition with different root-associated microbial sym-
bionts, including a decrease in ectomycorrhizal trees and an 
increase in arbuscular mycorrhizal and N-fixer symbiotic 
trees [62]. However, it remains poorly understood how such 
climate-induced changes in plant community structure alter 
the biomass production and nutrient requirement on an eco-
system scale. Future research efforts are needed to combine 
manipulated warming experiments and field investigations 
across transects of forest ecotones (e.g., temperate-boreal 
forest ecotone) to improve our understanding of this critical 
topic.

Effects of Climate Warming on Nitrogen 
and Phosphorus Limitation

Changing Strength of Nitrogen and Phosphorus 
Limitation Under Climate Warming

Global patterns of N and P limitation have been a research 
topic of focus for decades [5, 63–65]. Conventionally, N and 
P limitations are thought to occur widely in various terres-
trial ecosystems and N limitation is thought to prevail over 
P limitation on a global scale [63–65]. However, a quantita-
tive assessment of global terrestrial N and P limitation has 
been lacking for decades. Meta-analyses of N and P addition 
experiments can theoretically quantify the global pattern of 
N and P limitation [63, 64, 66], but such approaches imply 
considerable uncertainties by using non-isometric growth 
indicators (e.g., diameter at breast height, basal area, tree 
biomass carbon storage, and NPP) and/or using effect-size 
metrics not standardized by the level of nutrient addition 
[67]. Based on the stoichiometric homeostasis theory and 
Liebig's ‘Law of the Minimum’, Du et al. [5] assessed terres-
trial N and P limitation using a new indicator, i.e., the ratio 
of plant leaf N and P resorption efficiencies and concluded 
that P limitation is more prevailing than N limitation in 
global terrestrial ecosystems. Moreover, N limitation shifts 
towards P limitation at higher temperatures across broad 
climate gradients [5]. Specifically, N limitation generally 
occurs in boreal forests and temperate coniferous forests, 
while P limitation prevails in tropical forests, subtropical 
forests and warm temperate broadleaved forests character-
ized by highly weathered soils [5].

Although the spatial variations in N and P limitation 
across climate gradients have been well investigated, it 
remains poorly understood how climate warming will affect 
the strength and type of nutrient limitation over time [67]. 
Climate warming alters both the availability and demands 
of multiple nutrients [68], likely causing distinct trends in 
the strength of nutrient limitation to forest biomes [67]. In 
N-limited forests (e.g., boreal forests), the strength of N lim-
itation will be likely alleviated by climate warming since the 

potential increase in demand will likely be compensated by 
the accelerated N cycling and increased N availability [69, 
70]. In contrast, tropical soils are typically depleted in the 
P pool and climate warming combined with atmospheric 
CO2 fertilization will likely strengthen P limitation in tropi-
cal forests since the demand will likely increase while the 
availability is hardly affected [15, 71]. Such predictions of 
changes in nutrient limitation under climate warming across 
different forest biomes need to be further underpinned with 
additional empirical evidence.

Shifting From Nitrogen to Phosphorus Limitation 
Under Climate Warming

In addition to a change in the strength of nutrient limitation, 
climate warming may also result in a shift in the limiting 
nutrients. Experimental results indicate that climate warm-
ing significantly increased leaf N:P ratio [68, 72, 73], imply-
ing that warmer temperature tends to shift ecosystems from 
N limitation toward P limitation over time. In some regions 
where forest is weakly limited by N availability (e.g., south-
ern temperate forest), climate warming may result in a shift 
from N limitation to P limitation over time. Such effects may 
lead to a poleward or upward of the boundary for P limita-
tion in future. Assessments in European forests also indicate 
an overall increase in P limitation by a higher leaf N:P ratio 
over the past three decades [74–76] because a warming and 
CO2-driven increase in N demand is likely compensated by a 
higher N availability from accelerated N mineralization and 
considerable N deposition, while the increase in P supply is 
relatively limited.

Warming‑Induced Changes in Nutrient 
Constraint on CO2 Fertilization Effect

CO2 Fertilization Effect as Regulated by Nutrient 
Limitation

Woody plants, characterized by a C3 photosynthetic path-
way, theoretically benefit from continuously rising atmos-
pheric CO2 concentrations [77]. Accordingly, previous 
studies based on experimental and modelling approaches 
have shown that forest biomass production and consequent 
C sinks increase significantly in response to CO2 enrichment 
[7, 78, 79]. The fertilization effect of rising CO2 concentra-
tions is a key mechanism that drives an increase in future 
C sinks as a premise to achieve C neutrality and migrate 
climate change [80].

Free air CO2 enrichment experiments (FACE) in temper-
ate forests indicate that the stimulation of forest growth by 
elevated CO2 concentrations diminishes over time, possibly 
attributed to progressive N limitation [81, 82]. Accordingly, 
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the CO2 fertilization effect on global vegetation productivity 
has been found to decline over the past three decades, par-
tially attributable to a constraint by N and P limitation [3]. 
These findings challenge the conventional views that forest 
C sinks will grow continuously and indefinitely with rising 
air CO2 concentrations.

Furthermore, free air CO2 enrichment experiments in 
tropical forests have shown that the NPP and C sinks showed 
a weak response to CO2 enrichment mainly attributable to 
strong P limitation [83–85]. However, simulations using 
dynamic global vegetation models (DGVMs) indicate that 
productivity and C sinks of tropical ecosystems have the 
highest sensitivity to CO2 fertilization among terrestrial 
biomes [79]. Additionally, intercomparison between experi-
mental results and P-enabled models suggests that the mag-
nitude of the CO2 fertilization effect on C sequestration is 
overestimated in current land surface models [86]. These 
contrasting results suggest that dynamic global vegetation 
models have not adequately accounted for the role of nutri-
ent limitation.

As driven by atmospheric CO2 enrichment, plant nutrient 
concentrations have been found to decrease in many terres-
trial ecosystems, implying a trend of oligotrophication [75, 
87–89]. Model simulations have suggested that the expected 
increase in future NPP and C storage would be largely 
reduced over time when considering, among other things, 
the role of N and/or P limitation [4, 13, 78, 90]. Particularly, 
tropical forests, currently holding the largest C sinks among 
all forest biomes, will likely play a less important role in 
future C sequestration and climate feedback than previously 
assumed [90]. The nutrient constraint on global land C sinks 
remains the largest uncertainty of future biogeochemical 
feedback to climate change.

Warming‑Mediated Nutrient Constraint on CO2 
Fertilization Effect

The pathway that climate warming alters nutrient cycling 
and thereby the strength of nutrient limitation will likely 
play a key role in regulating the future C response to rising 
air CO2 concentrations. In view of distinct nutrient status 
across different forest biomes [5], climate warming will 
likely cause spatially divergent nutrient-mediated effects on 
the response of NPP and C sequestration to rising air CO2 
concentrations. Experimental results indicate no significant 
stimulation of CO2 enrichment on NPP (warming leads also 
to increased autotrophic respiration) and C sinks in tropi-
cal forests mainly attributable to strong P limitation [84, 
85]. Future climate warming will not likely alleviate the P 
limitation to sustain the CO2 fertilization effect in tropical 
forests (Fig. 5). In contrast, climate warming is expected to 
improve N availability in N-limited forests (e.g., boreal for-
ests and temperate forests) via accelerating N mineralization 

and biological N fixation and this alleviation of N limitation 
will likely sustain a significant increase in future CO2 fer-
tilization effect (Fig. 5). Moreover, the warming-mediated 
response of NPP to rising CO2 concentrations is predicted 
to be stronger in boreal forest compared with temperate and 
tropical forests given increased available nutrients from an 
acceleration of decomposition and mineralization of the 
accumulated litters and soil organic matter (Fig. 5).

Accordingly, a recent study of model simulations dem-
onstrated a stronger response of gross primary productiv-
ity to the future rise of atmospheric CO2 concentrations in 
boreal zone compared with the tropics [91]. However, there 
are only a small number of earth system models includ-
ing both N and P cycling and only one was included in the 
Sixth Phase of the Coupled Model Intercomparison Project 
(CMIP6) [92–95]. The inclusion of C, N and P cycles in 
earth system models is crucial since model simulations gen-
erally predict a reduction of future land C sinks by 25–50% 
when accounting for N and P limitation [4, 95]. Future 
research efforts are further needed to better account for N 
and P cycling processes in earth system models to constrain 
future C sinks in response to future CO2 enrichment and 
climate change.

Conclusions and Outlook

Rising air CO2 concentration is a key driver of the projected 
increase in land C sinks. However, increasingly more evi-
dence suggests that nutrient limitation (especially N and P) 
constrains the CO2 fertilization effect. Based on a litera-
ture synthesis, here we provide a perspective that N and P 

Fig. 5   Hypothesized responses of NPP and C sequestration to future 
increase in air CO2 concentration as mediated by warming-induced 
changes in nutrient limitation in boreal, temperate and tropical for-
est biomes. See a more detailed description and discussion in Section  
Warming-Mediated Nutrient Constraint on CO 2 Fertilization Effect
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limitations in major forest biomes can shift in strength under 
continuing climate warming as a result of changes in nutrient 
availability and plant nutrient requirements. Our review sug-
gests that climate warming causes a considerable increase 
in N availability of generally N-limited boreal and temper-
ate forests but a weak increase in P availability in generally 
P-limited tropical forests. Climate warming tends to allevi-
ate N limitation in boreal and temperate forests but it will 
not likely alleviate P limitation in tropical forests given a 
depleted P pool. We further highlight that warming-induced 
changes in nutrient cycling and availability will play an 
important role in regulating future C sinks in biome-specific 
response to rising CO2 concentrations. Empirical and mod-
elling research efforts both are needed to further improve 
our understanding of this pathway to reduce uncertainties 
in future C sink projection.
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