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Abstract

Purpose of Review

Forests are integral to global ecological stability, climate regulation, and economic resilience. They function as major carbon
sinks, act as biodiversity reservoirs, and provide ecosystem services. Accurately modeling forest growth is essential to predict
ecosystem responses to climate change and optimize ecosystem services. However, predicting forest growth remains challenging
due to complex interactions between ecological processes, external drivers like climate change, and intrinsic dynamics, such as
legacy effects and emergent properties, that influence forest responses over time.

This work offers a detailed examination of theories in forest growth modeling, with a focus on emergent approaches as imple-
mented in 18 forest growth models, which vary in their approaches and goals.

Recent Findings

Forest modeling requires a deep understanding of forest growth theories driven by multiple, often interacting, processes. Our
findings reveal distinct model clusters with varying process integrations and complexity, ranging from stand-level to terrestrial
ecosystem models. Additionally, we highlight the trade-offs between model detail and scalability.

Summary

Our review showcases multiple theories, such as Functional Balance, Local Determination of Growth, and Optimality Principles

of forest growth, thus providing a synthetic overview of the main frameworks for resource allocation in plants. As multiple

studies emphasize the importance of integrating different and recent theories to better capture growth dynamics, we build on a

state-of-the-art multi-modelling comparison to discuss what the implications of different theories might be at different temporal

and spatial resolutions. Finally, we explore how emerging technologies, such as machine learning, can enhance predictive

accuracy and help address current modeling limitations.
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Abstract 18 

Purpose of Review 19 

Forests are integral to global ecological stability, climate regulation, and economic resilience. 20 

They function as major carbon sinks, act as biodiversity reservoirs, and provide ecosystem 21 

services. Accurately modeling forest growth is essential to predict ecosystem responses to 22 

climate change and optimize ecosystem services. However, predicting forest growth remains 23 

challenging due to complex interactions between ecological processes, external drivers like 24 

climate change, and intrinsic dynamics, such as legacy effects and emergent properties, that 25 

influence forest responses over time. 26 

This work offers a detailed examination of theories in forest growth modeling, with a focus 27 

on emergent approaches as implemented in 18 forest growth models, which vary in their 28 

approaches and goals.  29 
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Recent Findings 30 

Forest modeling requires a deep understanding of forest growth theories driven by multiple, 31 

often interacting, processes. Our findings reveal distinct model clusters with varying process 32 

integrations and complexity, ranging from stand-level to terrestrial ecosystem models. 33 

Additionally, we highlight the trade-offs between model detail and scalability. 34 

Summary 35 

Our review showcases multiple theories, such as Functional Balance, Local Determination of 36 

Growth, and Optimality Principles of forest growth, thus providing a synthetic overview of 37 

the main frameworks for resource allocation in plants. As multiple studies emphasize the 38 

importance of integrating different and recent theories to better capture growth dynamics, we 39 

build on a state-of-the-art multi-modelling comparison to discuss what the implications of 40 

different theories might be at different temporal and spatial resolutions. Finally, we explore 41 

how emerging technologies, such as machine learning, can enhance predictive accuracy and 42 

help address current modeling limitations. 43 

  44 
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1. Introduction 45 

Forests are pivotal in maintaining global ecological stability, ensuring economic security, and 46 

regulating climate systems. They act as potential carbon sinks, support biodiversity, and 47 

provide essential resources and services that sustain human and environmental well-being 48 

(1,2). Understanding forest growth extends beyond basic ecological interest: it encompasses 49 

economic, environmental, and social dimensions, as forests not only contribute to 50 

biodiversity and serve as carbon sinks but also protect against natural calamities and support 51 

multiple ecosystem functionalities (3,4). Changes in forest growth patterns serve as indicators 52 

of forest health and potential ecological shifts, influence legacy effects, and help managing 53 

disturbances (5). Thus, predicting these changes with high accuracy is imperative for reliably 54 

studying future trajectories of forest dynamics and ecosystem functioning under climate 55 

change (6,7). However, the ability of process-based models to accurately predict forest 56 

growth has become increasingly challenging due to the intricate interplay of ecological 57 

processes and the external factors that influence forest dynamics, particularly in the context 58 

of climate change (8–10). Accurate process representation is critical for trustworthy 59 

predictions, yet it is often hindered by the, still limited, understanding of key ecological 60 

interactions and feedback (11,12). 61 

Emergent and unpredictable patterns further complicate growth modeling as they arise when 62 

multiple processes interact in unforeseen ways, leading to outcomes that cannot be easily 63 

inferred by simply summing up individual effects. This complexity challenges the analysis of 64 

forest growth sensitivity to climate change and underscores the need for a holistic modeling 65 

approach (13,14). Early warning signals, crucial for anticipating transitions in forest health 66 

and productivity (15–17), are often difficult to detect due to the subtle, nonlinear, and delayed 67 

responses of forest ecosystems to stressors (18,19). Additionally, legacy effects — long-68 

lasting impacts of past climatic events, environmental conditions, or human interventions — 69 
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add significant complexity to forest dynamics by influencing growth, resilience and recovery 70 

through feedback loops (20–23). Climate-induced alterations, such as increasing 71 

temperatures, changing precipitation patterns, and extreme weather events, can unpredictably 72 

modify growth patterns, complicating the use of historical data for future predictions (7,9,24).  73 

Despite such limitations, the scientific community offers a plethora of forest/vegetation 74 

models, differing in assumptions and thus process implementation, which results in a 75 

multitude of projections (see e.g., 25–28). 76 

Currently, there is a tendency to promote highly mechanistically-based forest growth models 77 

as several studies claim that they offer distinct advantages in predicting forest growth, thanks 78 

to their foundation in conservation laws, monotonicity, and feedback mechanisms. These 79 

features contribute to robust predictions in the context of non-stationary climate and changing 80 

environmental regimes (29,30), as they are built on causal relationships, enabling them to 81 

answer effectively to many scientific questions (9,31). Several studies have however proven 82 

that despite the inherent process complexity, often the highly mechanistic models fail to 83 

reproduce the most recent trends in growth decline and associated disturbance and climatic-84 

extreme related mortalities (32–34), thus highlighting the need to carefully consider 85 

alternative modeling theories and process implementation in vegetations models. 86 

This work provides a perspective on the consolidated and emergent theories for the last 87 

decades and the evolution of forest growth approaches as implemented in a suite of 18, 88 

different in nature, as representatives of the available forest growth models while 89 

emphasizing the integration of theoretical paradigms and empirical data to enhance predictive 90 

accuracy under climate change trajectories and increasing uncertainty. Furthermore, the paper 91 

discusses the potential of emerging technologies such as the ones based on machine learning, 92 

and interdisciplinary approaches in overcoming these challenges highlighting significant 93 

opportunities for advancing forest growth predictions.  94 
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This review is structured as follows: Section 2 overviews key grounding theories in forest 95 

growth modeling, examining both foundational and contemporary approaches to growth 96 

regulation at the tree level. Section 3 analyzes various modeling approaches, detailing how 97 

different models represent growth dynamics, mortality, and regeneration across spatial and 98 

temporal scales. Section 4 considers the implications of these theories for model selection, 99 

assessing trade-offs in complexity, scalability, and ecological accuracy. Section 5 addresses 100 

current challenges and limitations, including data constraints, computational demands, and 101 

gaps in knowledge of specific processes. Section 6 concludes with future directions, focusing 102 

on the potential for integrating machine learning with forest models to improve predictive 103 

accuracy, adaptability, and ecological insights under climate change. Definition of words is 104 

based on the glossary provided in the Glossary 1.  105 

2. Theories of Forest Growth  106 

Growth refers to the physiological process by which organs, single pools, entire plants or 107 

communities increase their biomass because of increases in cell number, driven by the highly 108 

coordinated activities of cell division, expansion and differentiation and their death (35). In 109 

trees, growth is typically measured by the increment of the stem in volume, diameter, or tree 110 

height with the growth rate often equated to the accumulated biomass at a given time (36). 111 

Plant growth follows, in principle, an exponentially increasing curve which persists until the 112 

plant's death (37). Under optimal environmental conditions, the rate of biomass accumulation 113 

in trees increases continuously with tree size and the relative growth rate can peak at 114 

approximately 1 g g
-1

 week
-1

 meaning the plant’s size could potentially double within a week 115 

(38). However, at a relatively coarse spatial scale (e.g., stand and landscape), the net growth 116 

concept is used, which considers not only the growth of e.g. single pools or individual trees 117 

but also includes mortality (tree death) and recruitment (ingrowth).  118 
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Growth in plants results from the inherently complex balance between the supply and the 119 

demand of carbohydrate and nutrient substrates. This process is driven by feedback 120 

mechanisms between supply and demand, making allocation a property of a system that 121 

encompasses several distinct processes (39,40). 122 

The development of forest growth models has historically been significantly influenced by 123 

competing theories that focus on different aspects of forest ecology. For instance, the 124 

‘Functional Balance’ theory refers to the equilibrium between the supply of resources for 125 

growth and the need for proper functioning of plant tissues (41) and establishes a balance 126 

between leaf and root activities. Changes in environmental factors or interventions like 127 

pruning can disturb the functional balance, but plants generally respond by reallocating 128 

resources to minimize limitations to growth (40,42).  129 

According to the ‘Local Determination of Growth’ theory, growth patterns in plants are 130 

adapted to optimize resource capture (43). This adaptation promotes efficient resource 131 

capture by favoring the growth of parts of the plant that acquire limiting resources.  132 

The ‘Optimality Principles’ theory suggests instead that resource allocation is driven by long-133 

term evolutionary trends and immediate short-term responses to seasonal physiological and 134 

metabolic adjustments to environmental changes, which can influence their growth, survival 135 

and reproduction (44). Lastly, the ‘Coordination’ theory proposes that growth is regulated by 136 

the balance between distinct processes, coordinated by an internal mechanism in response to 137 

changing external conditions. While focusing on immediate regulation, this theory does not 138 

necessarily exclude the possibility that these mechanisms are aligned with broader 139 

evolutionary and adaptability goals (40). 140 

In the realm of growth modeling applied to trees, two main general approaches can be 141 

recognized which are built on ‘photosynthetic’ and ‘non-photosynthetic’ growth process 142 

representation (30,45) (Figure 1).  143 
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At the center of the ‘photosynthetic-centric’ approach, the photosynthesis process controls 144 

growth with growth resulting from the net balance between synthesized sugars and those lost 145 

because of metabolic activity (i.e. autotrophic respiration). Ultimately, growth is considered 146 

as the result of photosynthesis less the metabolic costs for synthesizing new tissues (growth 147 

respiration) and for maintaining the existing ones (maintenance respiration; the well-known 148 

‘Growth and Maintenance Respiration Paradigm’, GMRP; (46,47)) and the portion of non-149 

structural carbon (NSC) not used for biomass growth including sugars to mycorrhizas and 150 

biogenic volatile organic compounds (48–50). These processes result in the synthesis of new 151 

biomass and can be significantly influenced by environmental conditions such as 152 

temperature, light, wind, and nutrient and water availability. The photosynthetic-centric 153 

approach is adopted by models like: 3-PG (51), 3D-CMCC-FEM (52,53), GOTILWA+ (54) 154 

4C (55), LANDIS (56), iLand (57), LPJ-GUESS 4.0 (58), GO+ (59), SEIB-DGVM (60), 155 

FATES (61), HYBRID 4.0 (62) ED (63), and aDGVM (64). 156 

At the leaf or canopy level, there are two main and common approaches to model 157 

photosynthesis: a) the Light Use Efficiency (LUE) approach, which empirically estimates 158 

photosynthesis based on the efficiency of converting absorbed light into biomass (65); and, b) 159 

the biochemical model of Farquhar, von Caemmerer, and Berry (66), which mechanistically 160 

incorporates factors like Rubisco activity and atmospheric and intercellular CO2 161 

concentration (67). 162 

Historically, most of the models integrated the sole photosynthetic-centric approach (both as 163 

LUE or FvCB or intermediate versions of these two) emphasizing the source side, where 164 

growth is viewed as a direct result of the carbon assimilated through photosynthesis. Theories 165 

like the ‘Functional Balance’ and ‘Local Determination of Growth’ imply that without a 166 

sufficient supply of photosynthetic products, growth cannot proceed efficiently, thus placing 167 

the source at the forefront of the growth process.  168 
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In contrast to the photosynthetic-centric approach, which primarily focuses on source-driven 169 

models that emphasize the supply of carbon and nutrients as the key drivers of plant growth, 170 

the ‘non-photosynthetic-centric’ approach offers a more nuanced understanding by 171 

incorporating source-sink dynamics (30). This perspective recognizes that plant growth is not 172 

solely determined by the availability of resources (such as atmospheric CO2, water and soil 173 

nutrients), but also by the critical role of sink strength in regulating photosynthesis and 174 

biomass allocation, particularly under varying environmental conditions (68). This approach 175 

moves beyond simple carbon balance models by acknowledging that plants actively manage 176 

resource acquisition and allocation between different organs (e.g. leaves, stems and roots) 177 

based on both immediate physiological demands and long-term survival strategies (30,68–178 

72). Non-photosynthesis-centric models such as ForClim and LandClim fall into this 179 

category, as they do not simulate photosynthesis directly. Instead, population dynamics are 180 

governed by 'growth,' which is calculated without explicitly modeling the photosynthetic 181 

process. These models account for physiological limits and the demand of various organs 182 

(sinks) in regulating growth, especially under stress conditions via empirical relationships. 183 

For example, ForClim operates at a lower complexity level, with simpler carbon allocation 184 

mechanisms. However, these models are well-suited for capturing long-term forest dynamics 185 

in stands or landscapes where resource limitations, such as water or nutrients, play a 186 

significant role.  187 

As an underlying theory to the non-photosynthetic centric approach, the Optimality theory 188 

posits that plants optimize resource allocation to maximize net carbon gain while minimizing 189 

physiological costs associated with photosynthesis and hydraulic maintenance (73). In this 190 

perspective, plants optimize their growth by balancing the needs of these sinks with the 191 

resources available, thereby implying that the sink could be the primary driver (45,74). 192 
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This involves balancing trade-offs among carbon assimilation, water-use efficiency, and the 193 

risk of hydraulic failure due to xylem embolism (75–77). In addition, recent studies highlight 194 

how plants are optimizing agents that allocate resources to maximize long-term fitness 195 

through strategic investments enhancing future resource capture, stress resilience, and 196 

competitiveness. By incorporating economic principles into ecological modeling, the 197 

maximum optimization provides a novel perspective on plant resource allocation strategies 198 

under fluctuating environmental conditions (78,79). This theory brings the sink into focus, 199 

suggesting that the demand from various plant tissues (sinks) for resources is what, 200 

ultimately, drives growth. 201 

The integration of the two primary approaches — photosynthetic-centric and non-202 

photosynthetic-centric — highlights a fundamental conceptual challenge that resembles the 203 

classic "chicken-and-egg" dilemma. In the context of plant growth, this dilemma raises the 204 

question: which comes first, the source (photosynthesis and carbon supply) or the sink (the 205 

demand from growing tissues)?  206 

This interplay between source and sink dynamics is not merely academic — it is crucial for 207 

developing accurate models of plant growth. Just as the chicken-and-egg question forces us to 208 

consider the origin of life cycles, these growth theories compel us to rethink the starting point 209 

of the growth process: is it the photosynthetic carbon supply (the "egg") that initiates growth, 210 

or is it the demand from growing tissues (the "chicken") that governs how resources are 211 

allocated, and growth is achieved? This debate is central to understanding plant growth 212 

because it forces us to consider whether it is the availability of resources (like carbon from 213 

photosynthesis) that primarily drives growth, or if it is the capacity of plant tissues to utilize 214 

these resources (the sinks) that governs how resources are allocated and ultimately, how 215 

growth occurs (80).  216 
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3. Approaches to Model Growth in Forest Models 217 

Models simulate forest growth through diversified approaches, each designed to capture 218 

distinct aspects of growth dynamics. For instance, dynamic global vegetation models 219 

(DGVMs) like LPJ-GUESS and SEIB-DGVM focus on global scale simulations by 220 

incorporating large-scale climate-vegetation feedback and disturbances regimes, often 221 

emphasizing biogeographical shifts across ecosystems and climate zones. Stand models that 222 

belong to the forest succession gap model family, such as FORMIND (81) and ForClim (82) 223 

focus on the simulation of forest dynamics by modeling the establishment, growth, and 224 

mortality of individual trees or small patches of forest, emphasizing the effects of species-225 

specific traits and light-competition on growth patterns.  226 

Stand-level models like 3-PG, 3D-CMCC-FEM and 4C offer a detailed mechanistic 227 

representation of tree growth by simulating the interaction between tree physiology and 228 

environmental variables at the single tree level and then extrapolate that at the landscape 229 

scale, often focusing on a single species.  230 

These models vary significantly in their complexity, spatial and temporal scales, and the 231 

specific growth attributes they emphasize, such as stem diameter, height, productivity, or 232 

overall biomass accumulation, as well as important processes like mortality and recruitment, 233 

which together shape long-term forest dynamics. Each model comes with different degrees of 234 

empiricism or mechanism that employ different theories (as the ones described in the 235 

previous section) and methodologies to model forest growth.  236 

In this section, process-based models were thus analyzed in more detail, in terms of their 237 

ability to simulate key components and subcomponents of forest growth, which are critical 238 

for understanding forest dynamics under various environmental and management conditions 239 

to discern patterns in model design and functionality across different scales (stand, landscape, 240 

terrestrial ecosystem) and to understand how these models align with specific research and 241 
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management objectives. The components include aspects such as model structure, temporal 242 

and spatial resolution, mortality processes, and allocation mechanisms, among others (Table 243 

1). Our work is inspired by the dataset of process-based models by (83), highlighting the 244 

various integrations of theoretical approaches to model forest growth and the impacts of 245 

climate change. We reviewed a total of 18 well-documented models, ensuring a 246 

representative sample that spans a variety of different modeling approaches (Table S1). The 247 

criteria used to categorize these models, as shown in Table 2, include Spatial Scale, Temporal 248 

Resolution, Growth Processes, Mortality and Establishment. 249 

We conducted a hierarchical clustering based on the complexity of their modalities 250 

corresponding to specific traits (Tables 2-3). The complexity of each trait’s modality was 251 

assessed ordinally, focusing on both structural components and functional processes. The 252 

results of this clustering are presented in Figure 2.  253 

The final clustering is based on the complexity of various traits and modalities, which 254 

represent the structural and functional components that each model employs to simulate 255 

forest growth. The cluster map uses a color gradient to indicate the complexity of each trait 256 

within the models, with darker colors corresponding to higher complexity levels.  257 

The cluster map reveals three major clusters (See Figure 3), which correspond to different 258 

levels of model complexity and operational scales.  259 

The cluster map not only categorizes the models based on complexity but also highlights the 260 

relationships between different traits and their influence on model functionality. For example, 261 

there is a clear correlation between the temporal and spatial resolution of a model and its 262 

overall complexity. Models with finer temporal resolution (e.g., daily updates) tend to have 263 

higher complexity in modelling forest growth and are more likely to include dynamic 264 

environmental interactions (e.g., LPJ-GUESS 4.0 and 3D-CMCC-FEM). Similarly, models 265 

that operate at larger spatial scales (e.g., global) require mechanisms to simulate broader 266 
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ecosystem dynamics (e.g., CLM-FATES and SEIB-DGVM). Models that include detailed 267 

mortality processes, particularly those that account for stress and disturbance, are often more 268 

complex and integrated with dynamic allocation processes. Importantly, the approach to 269 

modeling photosynthesis significantly influences the model’s complexity and the modeling of 270 

growth. Models that use mechanistic photosynthesis models are generally more complex, as 271 

they require detailed input on environmental variables and a higher number of parameters 272 

(e.g., GO+ 3.0, 3D-CMCC-FEM, FATES, LPJ-GUESS 4.0).  273 

● 3.1. Cluster 1: stand-scale models 274 

This cluster predominantly comprises stand-scale models that focus on localized, highly 275 

detailed stand-level processes and forest dynamics. Operating at a single stand level with 276 

minimal spatial complexity, these models emphasize individual tree or cohort growth. They 277 

typically employ high temporal resolutions, using daily or sub-daily time steps to update tree 278 

productivity, thereby capturing short-term variability over time; however, some forest gap 279 

models operate on an annual time step. The approaches to photosynthesis modeling within 280 

this cluster are diverse — ranging from empirical and semi-empirical to mechanistic methods 281 

— resulting in varying levels of complexity across different models. Notably, these models 282 

often include multi-species dynamics, enabling more accurate simulations of species 283 

competition and succession in mixed forests (e.g., 3PGmix, 4C, and 3D-CMCC-FEM). 284 

Mortality processes are frequently static, characterized by fixed background mortality rates 285 

that do not dynamically respond to environmental stresses or disturbances (e.g., 3PG and 286 

FOREST-BGC). Additionally, natural regeneration is generally not accounted for as an 287 

independent process; at best, these models incorporate prescribed recruitment (e.g., (83); 288 

CASTANEA (84) and SPA, (85). Consequently, while these traits render the models efficient 289 

for specific, more intricate forest management scenarios — such as predicting growth in 290 
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uniform or heterogeneous stands under stable or varying environmental conditions — their 291 

spatial simplicity limits their applicability in geographically complex and heterogeneous 292 

forest ecosystems (86–89). They typically lack integration of broad-scale environmental 293 

processes and feedback mechanisms (e.g., hydrological cycles and disturbance regimes) 294 

between the forest ecosystem and its surrounding environment. 295 

● 3.2. Cluster 2: landscape-scale models 296 

This cluster encompasses models that generally operate at the landscape scale, incorporating 297 

a lower degree of spatial and temporal resolution compared to stand models, which makes 298 

them suitable for simulating complex interactions across larger and more heterogeneous 299 

forested areas. These models often include multi-species dynamics, allowing for more 300 

accurate simulations of species competition and succession in mixed forests (e.g., TreeMig, 301 

(90); and iLand, (91)). They frequently employ monthly or sub-monthly time steps for 302 

environmental variables such as temperature and soil moisture, facilitating straightforward 303 

projections. Unlike the models in Cluster 1, they include disturbance-related mortality 304 

mechanisms in response to factors like drought, pests, landslides, and wildfires; for instance, 305 

they can account for tree mortality caused by high-severity wildfires or simulate tree death 306 

triggered by landslides or avalanches in mountainous regions, accurately modeling observed 307 

mortality events (e.g., LandClim 2.0, ForClim 4.0.1, and FIRE-BGC, (92)). Additionally, 308 

these models explicitly represent the establishment process, allowing for the inclusion of 309 

demographic components (e.g., the LANDIS-II and ForCLim models, but see also (93)). 310 

However, they are characterized by a simplistic way of presenting the growth process, often 311 

relying on empirical approaches to represent growth. Overall, these models are well-suited 312 

for landscape-level analysis where interactions between different forest patches, species, and 313 

environmental conditions must be considered (e.g., LANDIS-II for simulating forest 314 
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succession and disturbance, and LandClim 2.0 for climate and wildfire interactions), striking 315 

a balance between complexity and usability, and making them effective tools for regional 316 

forest management and conservation planning. 317 

● 3.3. Cluster 3: terrestrial ecosystem-scale models 318 

The third cluster comprises models that operate at the terrestrial scale, characterized by high 319 

complexity due to their simulation of large-scale processes such as biome shifts, land-use 320 

changes, and long-term feedback between ecosystems and the global climate system — 321 

critical for understanding forest dynamics at larger spatial scales. These models often employ 322 

mechanistic approaches, integrating detailed process-based representations of photosynthesis, 323 

respiration, and growth alongside the biophysics of the system, as they are frequently used as 324 

boundary conditions for atmospheric models (e.g., the LPJ-GUESS and FATES models, but 325 

see also CLM, (94) and ORCHIDEE, (95)). This enables them to simulate complex 326 

interactions between biotic and abiotic factors across multiple spatial and temporal scales 327 

(96,97). Similar to the models in Cluster 1, they exhibit high sensitivity to climate variables 328 

like temperature and atmospheric CO2 levels, incorporating sophisticated algorithms to 329 

simulate the impact of changing climate conditions on forest growth and carbon sequestration 330 

(e.g., see (98)). They utilize advanced carbon allocation theories, such as source-sink 331 

dynamics and optimality principles, to distribute carbon and nutrients within the ecosystem, 332 

allowing them to simulate how forests might shift growth strategies in response to 333 

environmental stressors. The allocation processes are dynamic, often incorporating feedback 334 

mechanisms that adjust growth allocation based on current environmental conditions and 335 

resource availability (see Table 1 in (99) for a comprehensive review on the carbon allocation 336 

strategies adopted by different models including those of the Cluster 3). Like the models in 337 

the second cluster, they account for dynamic disturbance-related mortality processes due to 338 
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factors such as fire, storms, and land-use change, enabling simulation of long-term impacts 339 

on global forest carbon balance and biodiversity (e.g., the HYBRID 4.0, ED, and aDGVM 340 

models). Operating at a global scale, these models incorporate data from various biomes and 341 

climate zones, making them highly versatile and computationally intensive. While designed 342 

for large-scale simulations focusing on broad processes like carbon cycling, nutrient 343 

dynamics, and carbon-climate feedback, they necessarily simplify species-specific 344 

parameterizations, resulting in the adoption of plant functional types rather than individual 345 

species. Despite this simplification, they provide critical insights into how forests worldwide 346 

will respond to different climate scenarios, aiding in the development of global 347 

environmental policies and strategies for carbon management. 348 

4. Modeling Theories and Implications for Model Selection 349 

The complexity analysis of stand-, landscape-, and terrestrial ecosystem-scale models reveals 350 

distinct trade-offs between model detail, computational demands, and ecological processes 351 

represented.  352 

Concerning the spatial scale of investigation, stand models are generally best suited for small-353 

scale closed systems, where external agents (e.g., biotic disturbance agents) and spatial 354 

interactions across patches are not the primary focus. These models provide detailed growth 355 

simulations but often neglect crucial demographic processes like seed dispersal and process-356 

based establishment routines, which are usually employed to analyze long-term stand 357 

dynamics and highlight their utility in long-term ecological forecasting (e.g. ForClim, 358 

FORMIND). At this spatial scale, however, modeling growth processes differs largely from 359 

strictly empirical to highly mechanistic approaches.  360 

Models such as 3PG, 3D-CMCC-FEM, and 4C use various approaches to simulate 361 

photosynthesis, including the mechanistic FvCB model (66,100), the semi-empirical 362 

Haxeltine and Prentice model (96,101), and the empirical LUE model (102,103). 363 
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After accounting for the autotrophic respiration using either mechanistic representation (i.e., 364 

the GMRP approach, (46,47), an empirically constrained fixed-ratio approach (104–107) or a 365 

mixed one (e.g., (108)), photosynthates are then allocated to different structural and non-366 

structural tree biomass pools. Including photosynthesis representation in dynamic vegetation 367 

models enhances their capability to predict carbon fluxes comprehensively, but it also 368 

introduces trade-offs. The FvCB model provides mechanistic accuracy, capturing detailed 369 

responses to environmental changes at the cost of a high number of parameters to calibrate 370 

and increases uncertainty ranges, while the LUE approach offers computational simplicity 371 

suitable for large-scale, remotely-sensed driven, modeling applications. However, LUE can 372 

oversimplify critical processes, such as plant responses to stress at increasing temporal 373 

resolution and atmospheric CO2 increases (the so-called ‘CO2 fertilization effects’) 374 

In contrast, landscape models, which offer a good balance between detail and utility, use 375 

more simplistic approaches for growth but effectively model demographic processes such as 376 

establishment and natural mortality, making them valuable tools for large-scale ecological 377 

assessments (109). They are particularly effective in heterogeneous landscapes where species 378 

interactions and environmental variability play significant roles.  379 

Some of these models are not strictly centered on photosynthesis (e.g. TreeMig, LandClim), 380 

and use in most cases empirical response curves to simulate forest growth without accounting 381 

for the whole carbon balance of forest ecosystems which provides high efficiency in terms of 382 

computation costs and enhances the model application across large spatial extents, although 383 

results in coarser prediction in terms of tree growth (see Table 6 in (110) for a comprehensive 384 

cross-checking of the carbon balance by different models). 385 

Ecosystem models, which are the result of integrative research efforts such as global climate 386 

modeling and policy development, are well-balanced in representing growth, mortality, and 387 

establishment, but their high computational costs limit their scalability and real-time 388 
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application. These models dynamically allocate photosynthates to different tree biomass 389 

pools, guided by first principles such as in the ‘Pipe model’, ‘Resource Limitation’, and 390 

’Functional Balance’, theories after accounting for growth and maintenance respiration, as 391 

well as non-structural carbon, which is estimated only by some models in this category (e.g., 392 

LPJ-GUESS, SEIB-DGVM, and FATES) (see also (99)). This dynamic and responsive 393 

process representation enables these models to simulate growth in a highly complex and 394 

potentially more realistic manner.  395 

Concerning the funding theories of forest growth modeling, the comparison between 396 

photosynthetic-centric and non-photosynthetic-centric approaches in forest growth modeling 397 

is reflected in the traits and modalities presented in Table 2 and the hierarchical clustering 398 

shown in Figure 2. Despite the scale at which DVMs are employed, photosynthetic-centric 399 

models, such as 3D-CMCC-FEM (stand) and LPJ-GUESS (global and landscape), focus on 400 

carbon assimilation through photosynthesis as the primary driver of growth. In Figure 2, 401 

models in Cluster 3, such as LPJ-GUESS and SEIB-DGVM, are characterized by high 402 

complexity, dynamic carbon allocation processes, and high climate sensitivity. These models 403 

are apt to predict growth under fluctuating environmental conditions by capturing the 404 

intricate interactions between photosynthesis, plants’ respiration, carbon allocation, and 405 

environmental factors. However, a key limitation of these models is their high computational 406 

demand and potential oversimplification of sink dynamics, which may limit their ability to 407 

simulate responses under severe stress conditions, such as drought. 408 

5. Current challenges and limitations in forest models  409 

Forest and terrestrial ecosystem models are essential tools in ecological modeling but 410 

encounter significant challenges under climate change scenarios. These models frequently 411 

fail to accurately predict growth in very heterogeneous environments (111,112) and detect 412 

subtle or abrupt ecological shifts preceding major transitions due to their reliance on average 413 
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conditions and deterministic equations, which obscure fine-scale variability, feedback loops, 414 

and legacy effects. Consequently, they may miss early warning signs of ecosystem changes, 415 

diminishing their utility in anticipating and mitigating adverse outcomes (15). Additionally, 416 

historical environmental conditions and past management actions, which critically influence 417 

current and future forest dynamics, are often underrepresented because of their complexity 418 

and the scarcity of comprehensive historical data. Accurately capturing these legacy effects 419 

necessitates more sophisticated and computationally intensive model structures. The 420 

application of emergent constraints, which establishes explainable relationships between 421 

current modeled and observable variables and predicted outcomes, has successfully reduced 422 

uncertainties in climate models. However, when applied to vegetation and forest models, this 423 

approach assumes that these relationships remain stable over time, potentially 424 

underestimating novel climate dynamics and ecological feedback. Moreover, the limited 425 

availability and quality of observational data across different biomes can skew future 426 

projections, while the tendency to overfit models to present-day patterns may neglect outlier 427 

scenarios and unprecedented ecosystem shifts (113). Furthermore, theoretical frameworks 428 

such as ‘Optimality’ theory, which suggests that organisms adapt to maximize specific 429 

benefits like energy or resource use efficiency, often do not align with empirical observations 430 

(114–117). This discrepancy arises from multiple, conflicting constraints faced by organisms, 431 

phenotypic plasticity, environmental variability, and biological and evolutionary limitations, 432 

leading to suboptimal behavior in models. Plants must balance various demands, adjust 433 

dynamically to changing conditions, and operate under non-equilibrium dynamics, all of 434 

which challenge the strict predictions of optimality-based models. Additionally, unmeasured 435 

or misunderstood factors, such as nutrient limitations and root interactions, further complicate 436 

the accurate representation of plant behavior (118,119). In summary, while forest growth 437 

models are invaluable for understanding ecosystem dynamics, their limitations under climate 438 
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change stem from difficulties in detecting ecological shifts, inadequately representing legacy 439 

effects, the pitfalls of emergent constraints, and the complexities of implementing theoretical 440 

frameworks like ‘Optimality’ theory (13,120,121). Addressing these challenges requires 441 

integrating fine-scale variability, comprehensive historical data, cautious application of 442 

emergent constraints, and accommodating the complex, adaptive, and non-equilibrium nature 443 

of ecosystems within the models. 444 

6. Way forward and new opportunities with potential integration of Machine Learning 445 

with forest models. 446 

To address the challenges outlined in Section 5, we propose a comprehensive framework that 447 

enhances forest growth models through three key improvements: advancing biogeochemical 448 

process representation, optimizing parameter calibration, and enriching observational 449 

datasets. Current models are constrained by reliance on detailed site- and species-specific 450 

parameters (Cluster 1), high computational demands for large-scale applications (Cluster 2), 451 

inflexibility due to stringent assumptions (Cluster 3), and complex calibration processes 452 

(122,123). Our framework mitigates these limitations by leveraging advancements in 453 

computational capabilities and integrating artificial intelligence (AI). By combining 454 

mechanistic and machine learning (ML) approaches, we enhance predictive accuracy and 455 

robustness, utilizing ML’s flexibility despite its requirements for extensive datasets and 456 

challenges in explainability and extrapolation under stochastic conditions (124). We integrate 457 

legacy effects and advanced theoretical frameworks, such as ‘Optimality’ theory, with ML 458 

techniques to better capture complex ecological processes, enabling AI-driven models to 459 

adapt continuously through learning from extensive datasets and real-time feedback. Modular 460 

coupling allows ML to train sub-models within forest models, improving predictions of 461 

species migration in models like TreeMig and aDGVM (125,126). Innovative calibration 462 

methods, including real-time adaptive calibration and multi-objective optimization, utilize 463 
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high-resolution remote sensing data and ML to enhance parameter accuracy and scalability, 464 

thereby reducing uncertainties in projections such as gross primary productivity (127). 465 

Sequential coupling and Physics-Informed ML (PIML) further refine model accuracy by 466 

embedding ecological constraints within ML frameworks (31,128). Enriching observational 467 

datasets through open data sources, citizen science, and ML-driven remote sensing upscales 468 

point observations to continuous maps, enhancing model validation and calibration across 469 

diverse ecological contexts (129–131). Sustained funding is essential to maintain and expand 470 

these monitoring efforts, ensuring consistent long-term data collection and model 471 

advancement. 472 

6. Conclusions 473 

The hierarchical clustering and cluster map analyses offer a comprehensive understanding of 474 

the complexity and functionality of different ways to predict growth in different forest 475 

growth/vegetation models. By examining the connections between traits and model 476 

modalities, this study provides a description of the past and actual theories around the 477 

“growth” and a framework for selecting and developing models that are best suited to address 478 

specific forestry challenges, from local management practices to global ecological 479 

forecasting. This detailed analysis underscores the importance of aligning model complexity 480 

with the objectives of the research or management task at hand, ensuring that the chosen 481 

models provide accurate and actionable insights into forest growth and their dynamics. 482 

This perspective underscores the need for a dynamic approach to forest growth modeling that 483 

embraces both theoretical and empirical dimensions. As we advance, the integration of 484 

diverse data sources and theoretical frameworks will be crucial in developing future models 485 

that are not only scientifically robust but also practically relevant in managing forests 486 

sustainably in a changing climate. 487 
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 488 

Glossary 489 

● Forest growth model: a computational tool used to simulate the dynamics of forest 490 

ecosystems over time, including changes in biomass, structure, and species 491 

composition. These models represent processes such as tree growth, mortality, 492 

regeneration, competition, and environmental conditions such as climate and nutrient 493 

availability. 494 

● Photosynthetic-centric: refers to approaches and methods that consider photosynthetic 495 

activity as the primary driver of the sink activity (tissue growth). 496 

● Non-photosynthetic-centric: refers to approaches and methods that consider growth as 497 

a result of a source-sink coordination, where tissue growth (sink) is regulated by both 498 

the availability of resources from photosynthesis (source) and environmental 499 

constraints.  500 

● Spatial Scale: refers to the spatial resolution at which the model operates, whether it is 501 

stand-specific, landscape-wide, or applicable to a terrestrial ecosystem scale. 502 

● Temporal Resolution: refers to the frequency processes representations within a 503 

model, ranging from daily to decadal time steps. 504 

● Growth Processes: approaches used to simulate growth, such as the allocation 505 

processes, photosynthesis models, and climate sensitivity (i.e. how growth responds to 506 

changing climate variables like temperature, precipitation, and atmospheric CO2 507 

levels) 508 

● Mortality: the process through which models simulate tree mortality, including stress-509 

related and disturbance-related factors. This process, also if not strictly speaking 510 

refers to tree growth, controls community-level development and, therefore, 511 
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community growth. For more details on linking tree mortality to tree growth cf. 512 

Supplementary material, section 1.1. 513 

● Establishment: the process that involves the probabilities that govern tree regeneration 514 

and establishment within the model. Similarly to the mortality process, the 515 

establishment process controls community-level development and, therefore, their 516 

growth. For more details on linking tree mortality to tree growth cf. Supplementary 517 

material, Section 1.1. 518 
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Tables  923 

Table 1: Overview of forest growth model traits. Each trait is linked to specific components 924 

and subcomponents that describe how the models approach different ecological processes. 925 

Trait component sub-components 

model structure 
approach to model productivity 

and growth 
optimum equation, NPP 

model structure allocation 
dynamic coefficients, carbon 

balance, none 

model structure climate-sensitivity 
temperature, CO2, WUE, 

phenology, soil moisture 

temporal resolution time-step to model productivity daily, monthly, annual 

temporal resolution 
time-step for environmental 

influence 
daily, monthly, annual 

spatial resolution scale stand, landscape, global 
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Table 2: Categorization of Forest Growth Models Based on Traits and Modality Complexity. Each trait is identified by a specific code and 926 

prefix, linked to either the whole modeling system, spatial resolution, or growth. The categories include modeling approaches, species-specific 927 

dynamics, and time-step intervals for productivity and environmental influences. 928 

 929 

Category Trait name Code Prefix Category Identifier 

0) Whole modelling system (after 

Merganičová et al. 2019) 

Modelling approach MS_A 

Modelling 

system 

(MS) 

- Approach (A) 

Dominant modelling concept MS_C 

Modelling 

system 

(MS) 

- Concept (C) 

Dynamics are species- or PFT-

specific? 

MS_SPF

T 

Modelling 

system 

(MS) 

- Species or PFT-specific (SPFT) 

1) Spatial resolution 

Spatial Scale SC_SP Scale (SC) - Spatial Scale (SC) 

Forest species composition SC_SC Scale (SC) - Species composition (SC) 

Forest vertical stratification SC_VS Scale (SC) - Vertical stratification (VS) 

Forest horizontal structure SC_HS Scale (SC)  Horizontal structure (HS) 

Forest age composition SC_AC Scale (SC) - Age composition (AC) 

2) Growth 

Time step for update of tree 

geometry 

GR_TSU

_TG 

Growth 

(GR) 

Time Step 

(TSU) Tree geometry (TG) 

Time step for modeling of tree 

productivity 

GR_TSU

_TP 

Growth 

(GR) 

Time Step 

(TSU) Tree productivity (TP) 

Time step for environmental 

influences 

GR_TSU

_EI 

Growth 

(GR) 

Time Step 

(TSU) Environmental Influence (EI) 
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Photosynthesis modeling approach 

GR_PM

A 

Growth 

(GR) - 

Photosynthesis modeling approach 

(PMA) 

Autotrophic respiration GR_AR 
Growth 

(GR) 
- Autotrophic Respiration (AR) 

Allocation GR_A 
Growth 

(GR) 
- Allocation (A) 

Allocation processes GR_AP 

Growth 

(GR) - Allocation Processes (AP) 

Structural / Non-structural Carbon 

GR_SN

SC 

Growth 

(GR) - 

Structural / Non-structural Carbon 

SNSC (SNSC) 

Photosynthesis model 
GR_PM 

Growth 

(GR) 
- Photosynthesis model (PM) 

Temperature 
GR_T 

Growth 

(GR) 
- Temperature (T) 

Soil moisture 
GR_SM 

Growth 

(GR) 
- Soil Moisture (SM) 

Nutrients 
GR_N 

Growth 

(GR) 
- Nutrients (N) 

CO2 GR_CO2 

Growth 

(GR) - Ca concentration (CO2) 

WUE 

GR_WU

E 

Growth 

(GR) - Water use efficiency (WUE) 

Phenology GR_P 

Growth 

(GR) - Phenology (P) 

3) Mortality 

Background mortality MO_BM 

Mortality 

(MO) - Background Mortality (BM) 

Stress-related mortality MO_SM 

Mortality 

(MO) - Stress Mortality (SM) 

Disturbance mortality 

MO_D

M 

Mortality 

(MO) - Disturbance Mortality (DM) 
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4) Establishment 

Modeling approach ES_A 

Establish

ment (ES) - Approach (A) 

Probability ES_P 

Establish

ment (ES) - Probability (P) 

Ingrowth threshold ES_IT 

Establish

ment (ES) - Ingrowth threshold (IT) 

Browsing ES_B 

Establish

ment (ES) - Browsing (B) 

Seed production ES_SP 

Establish

ment (ES) - Seed Production (SP) 

Dispersal ES_D 

Establish

ment (ES) - Dispersal (D) 

 930 

 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 
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Table 3: Modality Complexity in Forest Growth Models, ranging from hybrid to mechanistic and empirical approaches. Our analysis covers traits 939 

related to species-specific dynamics, spatial scales (globe, landscape, stand), forest structure (monoculture, multispecies), temporal resolution 940 

(decadal to sub-daily), and the modeling approach (photosynthetic-centric vs. non-photosynthetic-centric). The table highlights how each trait's 941 

complexity increases across modalities, providing insights into the trade-offs between model accuracy and computational demand. 942 

Modality (complexity) 

MOD1 MOD2 MOD3 MOD4 MOD5 MOD6 

Hybrid (1) Mechanistic (2)     

Empirical (1) Process-based (2)     

PFT-specific (1) Species-specific (2)     

Globe (1) Landscape (2) Stand (3)    

Monoculture (1) Multispecies (2)     

Monolayer (1) Multilayer (2)     

spatially implicit (1) spatially explicit (2)     

Even-Aged (1) Uneven-Aged (2)     

Decadal (1) Annual (2) Monthly (3) Daily (4)   

Decadal (1) Annual (2) Monthly (3) Daily (4) Sub-daily (5)  

Decadal (1) Annual (2) Monthly (3) Daily (4) Sub-daily (5)  

Non-Photosynthetic-

centric (1) Photosynthetic-centric (2)     

NA (no carbon balance) 

(0) Fixed coefficients (1) GMRP (2)    

NA (no carbon balance) 

(0) Fixed coefficients (1) 

Fixed 

coefficients (via 

allocation) (2) 

Dynamic 

coefficients (3)   

Fixed ratios (1) Allometry and resource limitation (2) 

Root-shoot 

functional Pipe model (4) 

Source-sink model 

(5)  
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balance (3) 

No (0) Yes (1)     

Empirical (response 

curve) (1) Empirical (LUE) (2) 

Semi-Empirical 

(Haxeltine & 

Prentice) (3) 

Mechanistic 

(Farquhar) (4)   

Response curve (e.g. to 

DD) (1) Mechanistic (T-dependency of PS, R, ...) (2)     

Semi-Empirical 

(Response curve (e.g. to 

SM or DrIndex)) (1) Stomatal conductance (2) Mechanistic (3)    

No (0) Empirical (Response curve) (1) 

Mechanistic 

(from soil 

model/module) 

(2)    

No (0) Empirical (Response curve) (1) Ci/Ca (2)    

No (0) Response curve (1) 

Coupled 

photosynthesis-

stomatal 

conductance (2)    

T-controled (1) Eliophany (1) VPD (1) 

Resource 

limitation (2) Parallel model (2) 

Alternate model 

(2) 

No (0) Constant (1) 

Increasing with 

age (2) 

Increasing with 

size (2) 

Increasing with 

age and size (2) 

Decreasing with 

photosynthesis 

efficiency (3) 

No (0) Threshold approach (1) 

Increment-

related (2) 

Productivity-

related (2) 

Reserves depletion 

(Carbon 

starvation) (3)  

No (0) Yes (1)     

User defined 

recruitment (1) Bernoulli (2) Poisson (2) Hurdle (2)   
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No (0) Random (1) Rate (1) 

Random, 

modified by 

environment (2)   

No (0) 0 < dbh < 2 cm (1) Age class (1) h < 50 cm (1) 

50 < h < 130 cm 

(1)  

No (0) Static (1) Dynamic (2)    

No (0) Simple model (no masting) (1) 

Complex model 

(w/ masting) (2)    

No (0) Single exponential kernel (1) 

Double 

exponential 

kernel (1)    

 943 

 944 

 945 

 946 

 947 

 948 

 949 

 950 

 951 

 952 
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Figures 953 

 954 

Figure 1: Conceptual representation of plant growth modeling approaches, modified after Körner (68). (a) The left panel outlines the 955 

photosynthesis theories and their representation. (b) The right panel shows the interaction between "Environment," "Source Activity," and "Sink 956 

Activity," showing a linear flow for the Photosynthetic-centric approach (in green) and feedback loops for the Non-Photosynthetic-centric 957 

approach (in blue), with solid arrows for source control and dashed arrows for sink control. 958 
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 959 

Figure 2: Proposed framework for enhancing forest growth modeling 960 
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Figure 3: Hierarchical clustering of 18 process-based forest growth models based on modality complexity. The clustermap illustrates the relative 962 

complexity of different traits across the models, with color intensity representing the level of complexity (darker shades indicate higher 963 

complexity). The models are grouped into three primary clusters: (1) Low complexity models, which primarily operate at the stand scale with 964 

simpler structural components; (2) Moderate complexity models, which function at the landscape scale, incorporating more detailed spatial and 965 

temporal processes; and (3) High complexity models, which operate at the global scale and integrate a wide range of dynamic environmental 966 

interactions and sophisticated allocation processes. Key traits analyzed include spatial and temporal resolution, mortality processes, carbon 967 

allocation, and climate sensitivity. This clustering helps to categorize models based on their suitability for different research and management 968 

objectives, ranging from local stand management to global climate change forecasting. 969 
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Supplementary materials 977 

Modeling forest growth under climate change 978 

Boukhris et al., 2024 979 

1.1 Regeneration and Tree mortality 980 

At a relatively coarse spatial scale (e.g., stand and landscape), the net growth concept is used, 981 

which considers not only the growth of e.g. single pools or individual trees but also includes 982 

mortality (tree death) and recruitment. Mortality and regeneration are integral to forest 983 

growth modeling since these processes because their dynamics help simulate the full 984 

dynamics of forest ecosystems and tree communities, directly has a direct influence on 985 

influencing their growth and the overall forest structure (132,133). Accurately modeling tree 986 

growth (Section 2), has instead direct and direct implications on implication to growth 987 

dynamics, for instance the process of recruitment (via the allocation of resources to seeds 988 

rather than woody structure) and mortality via (e.g. self-thinning or carbon starvation). 989 

Including all these processes ensures that models can capture the cyclical nature of forests, 990 

where growth is constantly balanced by tree death (mortality) and new tree establishment 991 

(regeneration). Here’s why they are closely tied to growth modeling: 992 

- Mortality as a Growth Regulator: 993 

Mortality is not a separate process but a direct counterbalance to growth. As trees grow, 994 

competition for resources like light, water, and nutrients increases, leading to stress-related or 995 

disturbance-induced mortality. In growth models like ForClim (134), LANDIS-II (135), and 996 

SORTIE (136), mortality is explicitly linked to growth conditions. If growth rates are high, 997 

competition may lead to higher mortality as trees compete for limited resources. Conversely, 998 
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low-growth conditions (e.g., drought or nutrient limitations) often result in increased 999 

mortality to reflect the decreased ability of trees to maintain themselves under stress. 1000 

- Regeneration and Growth Potential: 1001 

Regeneration is essential for maintaining forest growth over time. Without the establishment 1002 

of new trees, forests would eventually decline as older trees die. Regeneration processes, such 1003 

as seedling establishment and sapling growth, directly influence forest composition and the 1004 

potential for future growth. Models like SORTIE (136) and LPJ-GUESS (58) incorporate 1005 

detailed regeneration rules that depend on environmental factors like light availability, 1006 

competition, and disturbance regimes. These processes determine the species that will 1007 

dominate the forest in the future, shaping long-term growth patterns.  1008 

- Growth-Mortality-Regeneration Feedback Loops: 1009 

Growth models use mortality and regeneration to create feedback loops that regulate forest 1010 

structure. For instance, high growth rates in early forest development phases can be followed 1011 

by increased mortality due to self-thinning, where trees die off as competition intensifies. 1012 

Regeneration also plays a critical role in these loops, as gaps created by mortality allow for 1013 

new seedlings to establish, fostering a new cycle of growth. Without integrating these 1014 

processes, growth models would overestimate forest biomass accumulation and fail to 1015 

represent realistically the ecosystem dynamics (137). 1016 
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