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Abstract 33 

The consequences of climate change continue to threaten European forests, 34 

particularly for species located at the edges of their latitudinal and altitudinal ranges. 35 

While extensively studied in Central Europe, European beech forests require further 36 

investigation to understand how climate change will affect these ecosystems in 37 

Mediterranean areas. Proposed silvicultural options increasingly aim at sustainable 38 

management to reduce biotic and abiotic stresses and enhance these forest 39 

ecosystems' resistance and resilience mechanisms. Process-based models (PBMs) can 40 

help us to simulate such phenomena and capture early stress signals while considering 41 

the effect of different management approaches. In this study, we focus on estimating 42 

sensitivity of two state-of-the-art PBMs forest models by simulating carbon and water 43 

fluxes at the stand level to assess productivity changes and feedback resulting from 44 

different climatic forcings. Utilizing 3D-CMCC-FEM and MEDFATE models, we 45 

simulated and analyzed carbon (C) and water (H20) fluxes in diverse forest plots under 46 

managed vs. unmanaged scenarios and under current climate and different climatic 47 

forcings (RCP4.5 and RCP8.5), in two sites, on the Italian peninsula, Cansiglio in the 48 

north and Mongiana in the south. To ensure confidence in the models’ results, we first 49 

evaluated their performance in simulating C and H2O flux in three additional beech 50 

forests along a latitudinal gradient spanning from Denmark to central Italy. The results 51 

from both models for C and H2O flux assessment showed generally good model 52 

accuracy. At the Cansiglio site in northern Italy, both models simulated a general 53 

increase in C and H2O fluxes under the RCP8.5 climate scenario compared to the 54 

current climate. Still, no benefit in managed plots compared to unmanaged ones, as the 55 

site does not have water availability limitations, and thus, competition for water is low. 56 

At the Mongiana site in southern Italy, both models simulate a decrease in C and H2O 57 

fluxes and sensitivity to the different climatic forcings compared to the current climate, 58 
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with an increase in C and H2O fluxes considering specific management regimes 59 

compared to unmanaged scenarios. Conversely, in both models, under unmanaged 60 

scenarios, plots are simulated to experience first signals of mortality prematurely due 61 

to water stress (MEDFATE) and carbon starvation (3D-CMCC-FEM) scenarios. In 62 

conclusion, while management interventions may be considered a viable solution for 63 

the conservation of beech forests under future climate conditions at moister sites like 64 

Cansiglio, in drier sites like Mongiana may not lie in management interventions alone 65 

but rather in the establishment of synergistic mechanisms with other species. 66 

 67 

Keywords: Climate change sensitivity, Fagus sylvatica L., Forest management 68 

sensitivity, Carbon fluxes, Water fluxes, Stress mitigation, Process-based models. 69 

 70 

1. Introduction 71 

Predicting the future evolution of European forests is essential to continue to benefit 72 

from the ecosystem services they provide for human well-being. Forests offer, for 73 

instance, climate change mitigation through their ability to store atmospheric carbon 74 

dioxide in biomass and soil (Augusto and Bo, 2022; Pan et al., 2024). In 2020, the 75 

European Green Deal prioritized the vital role of forests and the forestry sector in 76 

attaining sustainability objectives, such as promoting sustainable forest management, 77 

enhancing forest resilience, and climate change mitigation (European Commission, 78 

2021). Technological advances and studies of forest ecosystem responses to 79 

management practices continue to promote the evolution of strategies that maintain or 80 

enhance forest ecosystem services, such as promoting biological diversity, water 81 

resources, soil protection, or carbon sequestration (Pukkala, 2016). Different forest 82 

management systems have been adopted in Europe over the years (e.g., clear-cutting 83 

or shelterwood) depending, among others, on the wood product desired, the stand 84 

age, and structure (Brunet et al., 2010). 85 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.20.608827doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.20.608827
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Forest management can be a key element in mitigating the effects of climate warming, 86 

maintaining the current primary productivity and the current distribution of tree 87 

species, or altering forest composition with more suited and productive species (Bosela 88 

et al., 2016). Indeed, the carbon sequestration capacity and productivity of forests are 89 

dependent, primarily, on species composition, site conditions as well as on stand age 90 

(Rötzer et al., 2010; Vangi et al., 2024a, b), which are affected by past and present 91 

forest management activities. According to Collalti et al. (2018) and Dalmonech et al. 92 

(2022), monospecific forests in Europe would appear unable to further increase the 93 

current rates of carbon storage and biomass production in future climate scenarios, 94 

considering current management practices, but at the same time demonstrating that 95 

managing under Business as Usual (BAU) practices still allows forests to accumulate 96 

biomass at higher rates compared to stands left to develop undisturbed. 97 

European beech (Fagus sylvatica L.) is an important deciduous tree species widely 98 

distributed in Europe, from southern Scandinavia to Sicily and Spain to northwest 99 

Turkey (Durrant et al., 2016). In Italy, according to the National Forest Inventory (INFC, 100 

2015), beech forests cover a total area of 1,053,183 hectares, accounting for about 11.7% 101 

of the country's overall forested land. European beech forests demonstrate 102 

susceptibility to temperature and precipitation fluctuations. For instance, a warmer 103 

environment and less precipitation are forcing shifts in distribution area or the onset of 104 

loss of canopy greenness (Axer et al., 2021; Noce et al., 2017, 2023; Zuccarini et al. 105 

2023; Rezaie et al. 2018). According to Skrk et al. (2023), the decline in growth of the 106 

beech forests primarily occurs in the dry and warm marginal conditions prevalent near 107 

the geographical edge of its distribution with a sub-Mediterranean climatic regime, 108 

posing a threat to the survival of beech populations in those areas. However, tree ring 109 

analyses have also revealed an unexpected increase in growth in the south 110 

Mediterranean region of Albania and Macedonia beech forests at the end of the 20th 111 
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century, challenging the presumed suppression of forest ecosystems due to drought 112 

(Tegel et al., 2014). Puchi et al. (2024) additionally shed light on the susceptibility to 113 

extreme drought events of beech forests found at higher latitudes compared to those 114 

found at lower latitudes in the Italian peninsula by highlighting an increase, for the 115 

latter, in growth related to the abundance of precipitation. In this context, it is 116 

important to minimize the uncertainty surrounding the response of the carbon, water, 117 

and energy cycles within beech forest ecosystems, especially as they have been 118 

shown to adapt to varying environmental drivers (Deb Burman et al., 2024). 119 

Process-based models (PBMs) are useful tools for studying forest dynamics, such as 120 

growth and mortality, as well as water (H2O) and carbon (C) use efficiency, and carbon 121 

stocks as key variables of forest mitigation potential (Vacchiano et al., 2012; Pilli et al., 122 

2022; Testolin et al., 2023; Morichetti et al., 2024). For many years, forest modelling has 123 

been widely used by forest ecologists for tackling numerous applied research 124 

questions, and the field is continuously evolving to include increasingly complex 125 

processes to improve model predictions of forest ecosystem responses to changing 126 

climates (Riviere et al., 2020; Kimmins et al., 2008; Maréchaux et al., 2021). By 127 

comparing the predictive performance of different models under current 128 

environmental conditions, it is possible to gain confidence in their predictions of future 129 

trends and make informed decisions in forest ecosystem management and planning 130 

processes (Huber et al., 2013; Mahnken et al., 2022). 131 

The main goal of the present study is to investigate the sensitivity of two state-of-the-132 

science PBMs: 3D-CMCC-FEM (Collalti et al., 2014) and MEDFATE (De Cáceres et al., 133 

2023). First under different forest management regimes and climate change scenarios 134 

for European beech forests in the Mediterranean area, seeking further insights into the 135 

C and H2O fluxes of this species under different management practices and changing 136 

environmental conditions. The study sites vary in terms of environmental factors that 137 
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can affect gross primary productivity (GPP), as well as latent heat (LE), which are the 138 

two variables considered in this analysis. Specifically, we tested: (i) to what extent 139 

different forest management options can influence C and H2O fluxes under the 140 

present-day climate; and, (ii) how harsher climate conditions may affect the C and H2O 141 

fluxes under different management options. To address these questions we 142 

parameterized and evaluated model performance for C and H2O fluxes at three forest 143 

stands dominated by beech forests: the Sorø (DK-Sor), Hesse (FR-Hes), and Collelongo 144 

(IT-Col) sites, which are included in the PROFOUND Database (PROFOUND DB) (Reyer 145 

et al., 2020a, b). Subsequently, we assessed the C and H2O fluxes at two target and 146 

independent beech forest sites in Italy (Cansiglio and Mongiana) by simulating their 147 

development under various management options and evaluating their (model) 148 

sensitivity to current and more severe climate conditions. 149 

 150 

2. Material and Methods 151 

2.1 3D-CMCC-FEM model 152 

The 3D-CMCC-FEM v.5.6 (‘Three-Dimensional – Coupled Model Carbon Cycle – 153 

Forest Ecosystem Module’) (Collalti et al., 2024 (and references therein); Marconi et al., 154 

2017; Dalmonech et al., 2022, 2024; Vangi et al., 2024a, 2024b; Morichetti et al., 2024) 155 

is an eco-physiological, biogeochemical and biophysical model. The model simulates C 156 

and H2O fluxes occurring within forest ecosystems daily, monthly, or annually, 157 

depending on the processes to simulate, with a common spatial scale of one hectare 158 

(Collalti et al., 2016). Photosynthesis is simulated using the biochemical model of 159 

Farquhar–von Caemmerer–Berry (Farquhar et al., 1980), integrating the sunlit and 160 

shaded leaves of the canopy (De Pury and Farquhar, 1997). For the temperature 161 

dependence of the Michaelis-Menten coefficient for Rubisco and the CO2 162 

compensation point without mitochondrial respiration, the model adopts the 163 
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parameterization described in Bernacchi et al. (2001, 2003). The net balance at the 164 

autotrophic level is represented by net primary production in eq 1: 165 

 166 

                                           NPP = GPP - Ra     (1)  167 

 168 

where Ra includes both maintenance respiration (Rm) and growth respiration (Rg). 169 

When Rm exceeds GPP, resulting in a negative NPP, the trees utilize their non-structural 170 

carbon reserves (NSC) (i.e., soluble sugars and starch) to meet the carbon demand 171 

(Collalti et al., 2020a; Merganikova et al., 2019). In deciduous trees, NSC is used to 172 

create new leaves during the bud-burst phase, replenishes during the growing season 173 

under favourable photosynthetic conditions, and finally remobilized in tissues to 174 

prepare for dormancy at the end of the growth phase. The replenishment of non-175 

structural carbon reserves is prioritized to reach the minimum safety threshold (i.e., 11% 176 

of sapwood dry mass for deciduous trees). Failure to consume almost all reserves may 177 

trigger defoliation mechanisms, or in the case of complete depletion (e.g., during 178 

prolonged stress periods), it may lead to the death of the entire cohort of trees (i.e., 179 

carbon starvation). The stomatal conductance gs is calculated using the Jarvis equation 180 

(Jarvis, 1976). The equation includes a species-specific parameter gs max (i.e., maximum 181 

stomatal conductance) controlled by some factors such as light, atmospheric CO2 182 

concentration, air temperature, soil water content, vapour pressure deficit (VPD), and 183 

stand age. According to Waring and Running (2007) and Monteith and Unsworth 184 

(2008), the Penman-Monteith equation is used to calculate the latent heat (LE) fluxes of 185 

evaporation as a function of incoming radiation, VPD, and conductances at a daily 186 

scale, summing up the canopy, soil, and snow (if any) latent heat expressed as Wm—2.  187 

The 3D-CMCC-FEM accounts for forest stand dynamics, including growth, competition 188 

for light, and tree mortality under different climatic conditions, considering both CO2 189 
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fertilization effects and temperature acclimation (Collalti et al., 2018, 2019; Kattge and 190 

Knorr, 2007). Several mortality routines are considered in the model, such as age-191 

dependent mortality, background mortality (stochastic mortality), self-thinning 192 

mortality, and the aforementioned mortality due to carbon starvation. In addition to 193 

mortality, biomass removal in 3D-CMCC-FEM results from forest management 194 

practices, such as thinning and final harvest (Collalti et al., 2018, Dalmonech et al., 195 

2022; Testolin et al., 2023). The required model input data include stand age, average 196 

DBH (Diameter at Breast Height), stand density, and tree height (Collalti et al., 2014). 197 

The soil compartment is represented using one single bucket layer, in which the 198 

available soil water (ASW, in mm) is updated every day considering the water inflows 199 

(precipitation and, if provided, irrigation) and outflows (evapotranspiration, i.e., the sum 200 

of evaporation from the soil and transpiration of the canopy). The remaining water 201 

between these two opposite (in sign) fluxes that exceeds the site-specific soil water 202 

holding capacity is considered lost as runoff. For a full 3D-CMCC-FEM description, see: 203 

https://doi.org/10.32018/ForModLab-book-2024. 204 

 205 

2.2 MEDFATE model 206 

MEDFATE v.4.2.0 is an R-based modelling framework that allows the simulation of the 207 

function and dynamics of forest ecosystems, with a specific emphasis on drought 208 

impacts under Mediterranean conditions (De Cáceres et al., 2021, 2023). MEDFATE 209 

calculates energy balance, photosynthesis, stomatal regulation, and plant transpiration 210 

of gas exchange separately at sub-daily steps. Like 3D-CMCC-FEM, MEDFATE also 211 

simulates photosynthesis at the leaf level using the biochemical model of Farquhar–von 212 

Caemmerer–Berry (Farquhar et al., 1980) for sunlit and shaded leaves (De Pury and 213 

Farquhar, 1997). MEDFATE can simulate plant hydraulics and stomatal regulation 214 

according to two different approaches: (a) steady-state plant hydraulics and 215 
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optimality-based stomatal regulation (Sperry et al., 1998; Sperry et al., 2017); and (b) 216 

transient plant hydraulics including water compartments and empirical stomatal 217 

regulation (Sureau-ECOS; Ruffault et al., 2022). In this work, we took the second 218 

approach, i.e., Sureau-ECOS (Ruffault et al., 2022). 219 

The hydraulic architecture of the Sureau-ECOS module comprises arbitrary soil layers. 220 

The rhizosphere contains coarse and fine root biomass calculated for each soil layer. 221 

The total root xylem conductance is determined by factors such as root length (limited 222 

by soil depth), weight, and distribution across the different layers. In addition, the 223 

resistance to water flow is dependent on two plant compartments (leaf and stem, each 224 

composed of symplasm and apoplasm). Overall, plant conductance is defined by the 225 

sum of resistances across the hydraulic network (i.e., soil, stem, and leaves), taking into 226 

account processes such as plant capacitance effects (i.e., the variation of symplasmic 227 

water reservoirs in the stem and leaves) and cavitation flows (i.e., water released to the 228 

streamflow from cavitated cells to non-cavitated cells during cavitation) (Hölttä et al., 229 

2009). It also considers cuticular transpiration of the stem and leaf flows. Each element 230 

(roots, stem, leaves) of the hydraulic network has a vulnerability curve 𝑘(𝚿), that 231 

declines as water pressure becomes more negative. The xylem vulnerability curve is 232 

modelled using a sigmoid function, defined by the equation: 233 

 234 

𝑘(𝛹) 	= 	𝑘!"#/1+ 𝑒𝑥𝑝(%&'()/25)·(-.-50)                                 (2) 235 

 236 

where kmax is the maximum hydraulic conductance, 𝚿50 is the water potential 237 

corresponding to 50% of conductance, and "slope" is the slope of the curve at that 238 

point. 239 

The stem vulnerability curve can be used to determine the proportion of stem 240 

conductance loss (PLCstem) associated with vessel embolism. This embolism reduces 241 
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overall tree transpiration and photosynthesis. Plant hydraulic failure and tree death can 242 

occur if the PLCstem exceeds the 50% threshold. 243 

Gas exchange in the Sureau-ECOS module depends on stomatal conductance (which 244 

depends on light, water availability, and air temperature) and leaf cuticular 245 

conductance, which changes with leaf temperature due to changes in the permeability 246 

of the epidermis. Stomatal regulation, unlike the 3D-CMCC-FEM, follows the Baldocchi 247 

(1994) approach, which allows coupling leaf photosynthesis with water losses. In 248 

addition, a multiplicative factor depending on leaf water potential is used to decrease 249 

stomatal conductance under drought conditions, following a sigmoidal function similar 250 

to stem vulnerability. 251 

Soil water balance is computed daily. MEDFATE can consider an arbitrary number of 252 

soil layers with varying depths in which the water movement within the soil follows a 253 

dual-permeability model (Jarvis et al., 1991, Larsbo et al., 2005). Soil water content 254 

(ΔVsoil, in mm) is calculated taking into account variables such as infiltration, capillarity 255 

rise, deep drainage, saturation effect, evaporation from the soil surface, transpiration of 256 

the herbaceous plant, and woody plant water uptake. A full MEDFATE description is 257 

available at: https://emf-creaf.github.io/medfatebook/index.html. 258 

 259 

2.3 Evaluation sites 260 

Model evaluation was performed in three PROFOUND European beech sites, i.e., Sorø 261 

(DK-Sor, Denmark), Hesse (FR-Hes, France), and Collelongo (IT-Col, Italy), in which we 262 

retrieved information on soil texture, soil depth, and stand inventory data of forest 263 

structure for model initialization (Reyer et al., 2020a, b). Moreover, these sites are 264 

equipped with the Eddy Covariance towers (EC; Pastorello et al., 2020) for long-term 265 

continuous monitoring of atmospheric carbon, water, and energy fluxes of the forests 266 

(Fig. 1). The DK-Sor site is located in the forest Lille Bogeskov on the island of Zealand in 267 

Denmark. FR-Hes is situated in the northeastern region of France and lies on the plain 268 
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at the base of the Vosges Mountains. IT-Col (Selva Piana stand) is a permanent 269 

experimental plot installed in 1991 and situated in a mountainous area of the Abruzzo 270 

region, the centre of Italy. 271 

The pedological characterization of soils exhibits distinct variations across the studied 272 

sites. The soil at the DK-Sor site is predominantly classified as either Alfisols or 273 

Mollisols. The FR-Hes site showcases an intermediary nature, displaying characteristics 274 

akin to both luvisols and stannic luvisols. At the IT-Col site, the prevailing soil type is 275 

identified as Humic alisols, according to the USDA soil classification system. Full details 276 

of these sites are reported in Table 1. 277 

The variables accounted for in the evaluation were obtained from the Fluxdata website 278 

(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/) from the FLUXNET2015 279 

database (Pastorello et al., 2020). The variables considered are the daily GPP, 280 

estimated from Net Ecosystem Exchange (NEE) measurements and quality checked 281 

using the constant USTAR turbulence correction according to Papale et al. (2006) and 282 

the Latent Heat flux (LE) with energy balance closure correction (i.e., ‘LE_CORR’) 283 

(Pastorello et al., 2020). 284 

  285 

2.4 Study sites 286 

The two target sites considered in this study are Cansiglio and Mongiana Forests (Fig. 1) 287 

(De Cinti et al., 2016). Each site consists of nine long-term monitored plots of differently 288 

managed beech stands, with a spatial extension for each area above 3 hectares, for 289 

about 27 hectares of the experimental area. Three different treatments were applied 290 

(see Fig. S1-S2). For each site, three of the nine plots considered were left unmanaged 291 

(i.e., no cutting and leaving the stands to natural development), defined as ‘Control’ 292 

plots, three plots were managed following the historical shelterwood system 293 

(‘Traditional’), and three with innovative cutting (‘Innovative’). In Cansiglio, considering 294 
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the developmental stage of the stand was an establishment cut to open growing space 295 

in the canopy for the establishment of regeneration. The ‘Innovative’ cutting consisted 296 

of selecting a non-fixed number of scattered, well-shaped trees (the ‘candidate trees’) 297 

and a thinning of neighbouring competitors to reduce competition and promote better 298 

growth. In Mongiana, ‘Traditional’ silvicultural treatment was the first preparatory cut to 299 

increase the vitality and health of the intended residual trees in the stand. The 300 

‘Innovative’ option was the identification of 45-50 as ‘candidate trees’ per hectare and 301 

removing only direct competitors. 302 

The Cansiglio site is situated in a mountainous area in the Veneto region, northern Italy. 303 

Mongiana site is located in a mountainous area in the Calabria region of southern Italy. 304 

The latter shows higher mean annual temperature (MAT, C°) and lower mean annual 305 

precipitation (MAP, mm year-1) (i.e., drier conditions) than the Cansiglio site located at 306 

higher latitudes (Table 1). Data on forest structure and soil texture were collected 307 

during the field campaigns conducted in 2011 and 2019 (Cansiglio) and in 2012 and 2019 308 

(Mongiana). At the Cansiglio site, soils are identified as Haplic luvisols, whereas at 309 

Mongiana, the predominant soil classifications consist of Inceptisols and Entisols, 310 

according to the USDA soil classification system. The variables analyzed in these sites, 311 

like in the evaluation sites, were GPP and LE. A summary for these sites is reported in 312 

Table 1. 313 

 314 

 315 

 316 
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 317 
Fig 1. Map of the study sites. Red dots represent sites for validating fluxes, while the blue dot signifies 318 
sites designated for management investigation. 319 
 320 
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Table 1. Characteristics of the study sites. The age of the stands refers to 2010. The mean annual 338 
temperature (MAT) and mean annual precipitation (MAP) for DK-Sor, FR-Hes and IT-Col refer to the 339 
period evaluated (i.e., 2006-2010 for the Sorø and Collelongo site and 2014-2018 for the Hesse site) 340 
while for Cansiglio and Mongiana from 2010 to 2022. The sum of precipitation in summer refers to June 341 
(J), July (J) and August (A) for the same period.  342 

SITE DESCRIPTION 

                                               Evaluation sites Managed sites 

Variable DK-Sor FR-Hes IT-Col Cansiglio Mongiana 

Coordinates (WGS84) 55°49’N, 

11°64’ E 

48°66’N, 

7°08’E 

41°85’N, 

13°59’E 

46°02’N, 

12°22’E 

38°29’N, 

16°14’E 

Country Denmar

k 

France Italy Italy Italy 

Altitude (m a.s.l.) 40 305 1500 1300 1300 

Area (ha) 1 1 1 27 27 

MAT (°C) 8.52 10.27 6.95 6.44 11.01 

MAP (mm) 818 853 1075 2219 1701 

Slope (%) - 5 35 12 10 

Aspect (°) 0 0 252 135 135 

Stand age (yr) 90 45 118 120 90 

Summer prec (J-J-

A)(mm) 

292 205 120 493 141 

 343 

2.5 Meteorological data 344 

For the evaluation sites (i.e., DK-Sor, FR-Hes, IT-Col) observed meteorological data 345 

were retrieved from the harmonized PROFOUND database (Reyer et al., 2020a, b) and 346 

Fluxnet database (https://data.icos-cp.eu/).  347 

For the Mongiana and Cansiglio sites, meteorological data for 2010-2022 were 348 

obtained at daily temporal resolution from the relevant region's Regional Environmental 349 

Protection Agencies (ARPAs), which are responsible for monitoring climate variables 350 

with weather stations. The choice of thermo-pluviometric weather station was based 351 

on the minimum distance from the study area (between 2 km and 20 km away from 352 

the study sites, respectively) and on the data availability and integration with other 353 
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weather stations in the proximity. The Bagnouls–Gaussen graph (Fig. S3) shows the 354 

mean monthly precipitation (mm) and air temperature (°C) recorded for every station 355 

inside the catchment. 356 

Climate scenarios used as inputs for two models at the Cansiglio and Mongiana sites, 357 

were from the COSMO-CLM simulation at a resolution of approximately 2.2 km over 358 

Italy (Raffa et al., 2023). 359 

The daily variables considered for 3D-CMCC-FEM were mean solar radiation (MJ m-2 360 

day-1), maximum and minimum air temperature (°C), precipitation (mm day-1), and the 361 

mean relative air humidity (%). In contrast, the MEDFATE model uses mean solar 362 

radiation, maximum and minimum air temperature, precipitation, the daily maximum 363 

and minimum relative air humidity, and wind speed (m s-1).  364 

 365 
2.6 Modelling set-up 366 

A set of parameters specific for Fagus sylvatica L. was provided as input to the model 367 

3D-CMCC-FEM as described in Collalti et al. (2023) while for MEDFATE as in De 368 

Cáceres et al. (2023). To remove any confounding factors related to parameterization, 369 

the parameters related to photosynthesis and stomatal conductance were kept 370 

constant between the two models (see Table 2). The maximum stomatal conductance 371 

(gs max) was set for 3D-CMCC-FEM according to Pietsch et al. (2005) as in BIOME BGC 372 

model. In 3D-CMCC-FEM, the maximum RuBisCO carboxylation rate (Vcmax) and the 373 

maximum electron transport rate for the RuBP regeneration (Jmax) at 25°C are corrected 374 

for leaf temperature according to Medlyn et al. (1999)  and soil water content as in 375 

Bonan et al. (2011). In MEDFATE, the Vcmax and Jmax at 25°C are modified according to 376 

Leuning (2002) leaf temperature dependence and modelled according to Medlyn et al. 377 

(1999) and Collatz et al. (1991).  378 

We then used the LAI and Available Soil Water (AWS) values obtained from the 3D-379 

CMCC-FEM outputs as input for running simulations with the MEDFATE model. This 380 
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allowed us to isolate and evaluate the specific effects of the processes of interest, such 381 

as the influence of NSC on stomatal conductance and photosynthesis, compared to the 382 

impact of hydraulic constraints on these same physiological processes. 383 

The LAI values were forced annually from the 3D-CMCC-FEM to the MEDFATE model 384 

since it is currently not possible to prescribe LAI values in the 3D-CMCC-FEM model 385 

(i.e., it is calculated prognostically). Precisely, here we used MEDFATE to simulate C 386 

and H2O fluxes only while considering plant hydraulics (De Cáceres et al., 2021), from 387 

the forest structure predicted by 3D-CMCC-FEM. For MEDFATE water balance, LAI 388 

values determine the competition for light and also drive the competition for soil water, 389 

along with the root distribution across soil layers. 390 

 391 
Table 2. Parameters and variables set for both models during the simulations. 392 

PARAMETERS AND VARIABLES 

Name Value Unit 

gs max 0.006 Pietsch et al. (2005) m s-1 

Jmax ~160 De Cáceres et al. (2023) μmol photons m-2 s-1 

Vcmax ~95 De Cáceres et al. (2023) μmol CO2 m-2 s-1 

LAI 
from 3D-CMCC-FEM to 

MEDFATE 
m2 m-2 

ASW 
from 3D-CMCC-FEM to 

MEDFATE 
mm 

 393 
 394 
2.7 Model evaluation 395 

Both models were run for five years on the evaluation sites, with the simulation period 396 

determined by the availability of observed data provided, as already mentioned, from 397 

the PROFOUND database, specifically, from 2006 to 2010 at DK-Sor and IT-Col sites 398 

while for FR-Hes starting from 2014 to 2018. The performance metrics of the results of 399 

the evaluation for each site for the GPP and LE variables were the coefficient of 400 

determination (R2), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). 401 
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 402 

2.8 Model application in managed sites  403 

In the managed sites (i.e., Cansiglio and Mongiana), simulations were performed using 404 

Historical climate (‘Hist’) and, to analyse models’ sensitivities to climate change, under 405 

two Representative Concentration Pathways 4.5 and 8.5 (‘Moderate’ and ‘Hot Climate’), 406 

respectively. The ‘Hist’ climate was used to run simulations at the Cansiglio site from 407 

2011 to 2022 and the Mongiana site from 2012 to 2022. In contrast, simulations using 408 

RCP4.5 and RCP8.5 climate ran accounting for the same period, that is, 11 years for the 409 

Cansiglio site and ten years for the Mongiana site, but considering the last years of the 410 

climate change scenarios (i.e., 2059-2070 and 2060-2070, respectively) to create 411 

harsher temperature and precipitation conditions, but with an increased atmospheric 412 

CO2 concentration (in μmol mol-1). 413 

For each of the nine sampled areas, in the Cansiglio and Mongiana sites, we considered 414 

a representative area of one hectare for each type of plot: ‘Control’, ‘Traditional’ , and 415 

‘Innovative’. At the beginning of the simulations, each site thus included a total of 9 416 

plots, each one hectare in size—comprising three ‘Control’ plots, three ‘Traditional’ 417 

plots, and three ‘Innovative’ plots. This setup resulted in a total of nine hectares being 418 

simulated per site where the model 3D-CMCC-FEM removed a certain percentage of 419 

the Basal Area (BA) according to the LIFE-ManFor project (see Table S2). ‘Traditional’ 420 

and ‘Innovative’ cutting took place for the first time in 2012 (Cansiglio) and 2013 421 

(Mongiana), respectively. Following preliminary results, since the Mongiana site 422 

experienced a lighter thinning intensity compared to the Cansiglio site (refer to Table 423 

S2), consequently, for the Mongiana site, we considered an alternative management 424 

option involving the removal of 40% of the BA. This was done to evaluate whether a 425 

more intensive management approach (‘SM’) could have influenced models’ results on 426 
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Gross Primary Productivity (GPP) and Latent Heat (LE) fluxes related to the reduction in 427 

competition and enhancing water availability. 428 

 429 

3. Results 430 

3.1 Model evaluation 431 

 432 

The daily gross primary productivity (GPP) at DK-Sor, FR-Hes, and IT-Col sites was 433 

estimated from EC and simulated by 3D-CMCC-FEM and MEDFATE, are shown in Fig. 434 

2. At DK-Sor site, the 3D-CMCC-FEM simulates a mean daily GPP of 5.14 gC m⁻² day⁻¹, 435 

while MEDFATE 5.13 gC m⁻² day⁻¹; and EC 5.54 gC m⁻² day⁻¹; at the FR-Hes site, 3D-436 

CMCC-FEM mean daily GPP of 6.18 gC m⁻² day⁻¹ compared to MEDFATE 4.82 gC m⁻² 437 

day⁻¹, and EC 4.99 gC m⁻² day⁻¹; lastly at the IT-Col site, 3D-CMCC-FEM mean daily 438 

GPP of 4.88 gC m⁻² day⁻¹ compared to MEDFATE 4.19 gC m⁻² day⁻¹; and EC 4.11 gC m⁻² 439 

day⁻¹; Additionally, at the DK-Sor site, the 3D-CMCC-FEM mean daily LE to the 440 

atmosphere of 2.83 MJ m⁻² day⁻¹, while the MEDFATE mean value of 2.22 MJ m⁻² day⁻¹; 441 

and EC 3.19 MJ m⁻² day⁻¹; at the FR-Hes site, 3D-CMCC-FEM mean daily LE of 4.16 MJ 442 

m⁻² day⁻¹ compared to MEDFATE 3.01 MJ m⁻² day⁻¹; and EC 4.47 MJ m⁻² day⁻¹; in the 443 

end at the IT-Col site, 3D-CMCC-FEM mean daily LE of 2.02 MJ m⁻² day⁻¹ compared to 444 

MEDFATE 2.57 MJ m-² day⁻¹; while EC 3.93 MJ m⁻² day⁻¹. The GPP predicted by 3D-445 

CMCC-FEM has shown higher values of R2 (0.92) at DK-Sor and the lowest value at FR-446 

Hes site (R2 = 0.76) whilst a value of R2 = 0.83 at IT-Col site, respectively. For the 447 

MEDFATE model, the GPP predicted highest value of R2 (0.85) was at DK-Sor the 448 

lowest (R2 = 0.68) at IT-Col, and at FR-Hes R2 = 0.76 the same showed for the 3D-449 

CMCC-FEM model, respectively. Differently, the highest R2 (0.89) value for 3D-CMCC-450 

FEM considering LE predicted vs. observed was at FR-Hes site and almost the same 451 

values for DK-Sor and IT-Col sites (R2 = 0.85 and 0.84, respectively). MEDFATE, for 452 
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predicted vs. observed LE variable, has shown the highest R2 (0.77) at IT-Col site, lower 453 

R2 (0.69) value at FR-Hes site and the lowest R2 (0.62) value at DK-Sor site, 454 

respectively. In general, both the Root Mean Square Error (RMSE) and Mean Absolute 455 

Error (MAE) values in all sites were reasonably low, falling within the ranges of 3.31 to 456 

2.02 gC m⁻² day⁻¹ and 2.46 to 1.47 MJ m⁻² day⁻¹, for both models and for both the 457 

variables. In Fig. 3 and Table 3 the summary of the evaluation metrics performance 458 

results. 459 

 460 
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 461 

Fig 2. Daily mean variations of GPP (gC m⁻² day⁻¹) and LE (MJ m⁻² day⁻¹) estimated from the direct 462 
micrometeorological eddy covariance measurements (GPP-Obs and LE-Obs) and models’ simulation 463 
(GPP-3D-CMCC-FEM, LE-3D-CMCC-FEM and, GPP-MEDFATE, LE-MEDFATE) during the evaluation 464 
period at the DK-Sor, IT-Col and FR-Hes at the Beech forest in 2006-2010 and 2014-2018, respectively. 465 
 466 
 467 
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 468 
Fig 3. Scatter plots and linear regressions of GPP (gC m⁻² day⁻¹) and LE (MJ m⁻² day⁻¹) of the models 469 
versus the direct micrometeorological eddy covariance measurements (Obs) at the Sorø (DK-Sor; 470 
2006-2010 period), Collelongo (IT-Col; 2006-2010 period) and Hesse (FR-Hes; 2014-2018 period). 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
 479 
 480 
 481 
 482 
 483 
 484 
 485 
 486 
 487 
 488 
 489 
 490 
 491 
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Table 3. The correlation coefficient (R2), the Root Mean Square Error (RMSE) and the Mean Absolute Error 492 
(MAE) for, the GPP (gC m⁻2 day⁻1) and LE (MJ m⁻2 day⁻¹) of the daily simulations at DK-Sor, IT-Col, and 493 
FR-Hes sites performed from both models 3D-CMCC-FEM and MEDFATE in the beech forest stands. 494 

 495 
 496 
3.2 Simulation results at Cansiglio 497 

 498 

Fig. 4 shows the simulation results using the 3D-CMCC-FEM and MEDFATE models in 499 

the Cansiglio site. For the 3D-CMCC-FEM, the ‘Control’ plot exhibited the lowest GPP 500 

values under ‘Hist’ climate conditions, averaging 1681 gC m⁻² year⁻¹. These values 501 

increased slightly to 1982 gC m⁻² year⁻¹ under the RCP4.5 climate and further rose to 502 

2204 gC m⁻² year⁻¹ under the RCP8.5 climate. Similarly, for plots managed with 503 

‘Traditional’ methods, the trends were consistent with the ‘Control’ plot, showing 504 

average GPP values of 1603, 1942, and 2141 gC m⁻² year⁻¹ under ‘Hist’, RCP4.5 and 505 

RCP8.5 climate, respectively. However, ‘Innovative’ management showed lower GPP 506 

fluxes across all three climate scenarios, with average values of 1534, 1882, and 2075 507 

gC m⁻² year⁻¹ under ‘Hist’ RCP4.5 and RCP8.5 climate, respectively. The MEDFATE 508 

model showed higher mean absolute GPP increases than the 3D-CMCC-FEM model 509 

  3D-CMCC-FEM MEDFATE 

  GPP LE GPP LE 

  R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

DK-Sor 0.91 2.17 1.65 0.85 2.02 1.58 0.85 2.52 1.97 0.62 3.09 2.39 

FR-Hes 0.76 3.30 2.46 0.89 2.09 1.47 0.76 2.80 2.21 0.69 3.31 2.37 

IT-Col 0.83 2.09 1.56 0.84 2.05 1.57 0.68 2.32 1.87 0.77 2.64 1.90 
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under RCP4.5 and RCP8.5 climates, respectively. Under the ‘Hist’ climate and all 510 

treatments, the mean GPP values were about 1638 gC m⁻² year⁻¹, whereas under the 511 

RCP4.5 climate, they rose to 2516 gC m⁻² year⁻¹ and 2995 gC m⁻² year⁻¹ under RCP8.5 512 

climate. Analyzing in Fig. 4 the trends of LE for the 3D-CMCC-FEM model, these trends 513 

closely follow those of GPP concerning management treatments. The 3D-CMCC-FEM 514 

LE values for the ‘Control’ plots, similar to GPP, were lowest for the ‘Hist’ climate with 515 

an average value over the simulation years of 1200 and 1501 MJ m⁻² year⁻¹ for the 516 

RCP4.5 climate, and 1391 MJ m⁻² year⁻¹ for the RCP8.5 climate, respectively. The LE of 517 

the ‘Traditional’ management predicts values of 1129 in the ‘Hist’ climate, 1440 in the 518 

RCP4.5 climate, and 1338 MJ m⁻² yr⁻¹ in the RCP8.5 climate, respectively. For the 519 

‘Innovative’ management, the mean LE values were 1121 in the ‘Hist’ climate, 1403 for 520 

the RCP4.5 climate, and 1306 MJ m⁻² yr⁻¹ for the RCP8.5 climate, respectively. Similar to 521 

the GPP fluxes, the MEDFATE model simulated reductions in LE fluxes among the 522 

treatments and higher values across the climates. The mean LE value modelled in the 523 

‘Hist’ climate, grouped by treatments (because of slight differences among 524 

managements), was about 920, 1419 in the RCP4.5 climate, and 1456 MJ m⁻² yr⁻¹ in the 525 

RCP8.5 climate, respectively. MEDFATE simulated a stem xylem conductance loss of 526 

approximately 40% in the seventh, eighth, and twelfth years of simulation for the 527 

RCP8.5 climate scenario in the ‘Control’ plot. In contrast, this loss was predicted only in 528 

the seventh year for the managed plots. Conversely, near-zero or negligible stem 529 

embolism were simulated under the ‘Hist’ and RCP4.5 climate scenarios. The 3D-530 

CMCC-FEM simulated higher values, albeit in a small percentage (i.e., between 8-10%) 531 

of NSC, increasing proportionally to the intensity of basal area removed, better 532 

observable in the graph at the tree level. 533 

 534 

 535 
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Fig 4. Comparative analysis between models output at the Cansiglio site. The top-left panel displays the 537 
PLCstem as modelled by MEDFATE, while the top-right panel shows the modelled LAI for 3D-CMCC-FEM 538 
(and used by MEDFATE). The middle-up panels (left and right) present annual GPP (gC m⁻² year⁻¹) as 539 
modelled by the MEDFATE and 3D-CMCC-FEM, respectively. The middle-down panels (left and right) 540 
depict annual LE (MJ m⁻² yr⁻¹) modelled by the MEDFATE and 3D-CMCC-FEM, respectively. The bottom 541 
panels (left and right) depict the annual minimum of NSC concentration (%) at the stand and tree level, 542 
respectively, as modelled by the 3D-CMCC-FEM. Different plot management strategies are represented 543 
by distinct line styles: solid lines for ‘Control’ plots (’no management’), dotted lines for ‘Innovative’ plots, 544 
and dashed lines for ‘Traditional’ plots (Shelterwood). Climate scenarios are indicated by line colours: 545 
black for ‘Hist’ climate data (2010-2022), orange and blue for RCP4.5 and RCP8.5 climate (2059-2070), 546 
respectively. 547 
 548 
 549 

3.3 Simulation results at Mongiana 550 

Simulation results at the (drier) Mongiana site well depicted the differences with the 551 

rainy Cansiglio site (Fig. 5). The 3D-CMCC-FEM model showed no significant 552 

differences in the mean values of GPP among various management interventions under 553 

‘Hist’ climate conditions, with a mean value of 2151 gC m⁻² yr⁻¹. Compared to the 554 

Cansiglio site, Mongiana exhibited lower average GPP values. Under RCP4.5 climate 555 

conditions, the GPP for the ‘Control’ plot was 1864 gC m⁻² yr⁻¹. In contrast, under the 556 

current climate, the ‘Traditional’ and ‘Innovative’ management interventions yielded 557 

higher average GPP values of 2115 gC m⁻² yr⁻¹ and 2086 gC m⁻² yr⁻¹. The GPP values 558 

under the more intensive management (‘SM’) and RCP4.5 climate decreased even 559 

further than those of the ‘Control’ plot, with an average value of 1650 gC m⁻² yr⁻¹. 560 

Under the RCP8.5, no differences in GPP were observed among management 561 

strategies, with values of about 1525 gC m⁻² yr⁻¹. Moreover, under the RCP8.5, the 562 

‘Control’ plot experienced complete mortality after five years of simulations. The 563 

MEDFATE model predicted slightly higher average values of GPP in the ‘Control’ plots 564 

(2099 gC m⁻² yr⁻¹) compared to the managed plots (2087 gC m⁻² yr⁻¹, encompassing 565 

both ‘Traditional’ and ‘Innovative’ of two management strategies), with no significant 566 
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differences observed among the management strategies and under ‘Hist’ climate. 567 

Under the RCP4.5 and RCP8.5, the GPP values were 1608 gC m⁻² yr⁻¹ and 1935 gC m⁻² 568 

yr⁻¹, respectively. The PLCstem graph in Fig. 5 indicated very high xylem embolism levels 569 

(i.e., reaching 100% every year) under RCP4.5 and RCP8.5 already in the first year of 570 

simulations. A pronounced embolism event was observed under the ‘Hist’ climate in 571 

2017, 2018, 2019, and 2022 in a 30-45% range for the ‘Control’ plots, while the 572 

managed plots experienced a maximum embolism of approximately 40% in 2017. 573 

Conversely, the 3D-CMCC-FEM model did not report any significant differences 574 

between managed and unmanaged plots for the LE. The average LE value for the ‘Hist’ 575 

climate was 1796 MJ m⁻² yr⁻¹, which decreased to 1220 MJ m⁻² yr⁻¹ under the RCP4.5 576 

and 1190 MJ m⁻² yr⁻¹ under the RCP8.5 in managed plots. As previously described, the 577 

‘Control’ plot under the RCP8.5 experienced mortality in the sixth year of simulation. 578 

Similarly to the previously described GPP fluxes, the MEDFATE model reported a slight 579 

difference in LE fluxes between the ‘Control’ plot under historical climate conditions 580 

(1623 MJ m⁻² yr⁻¹) and the managed plots (1603 MJ m⁻² yr⁻¹). For the RCP4.5 and 581 

RCP8.5, the LE values were 1100 MJ m⁻² yr⁻¹ and 1089 MJ m⁻² yr⁻¹, respectively. The LE 582 

values of the ‘Control’ plots are not reported neither for RCP4.5 nor for RCP8.5 because 583 

of the mortality experienced for the simulation years. 584 

 585 
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Fig 5. Comparative analysis between models output at the Mongiana site. The top-left panel displays the 587 
percent loss of PLCstem as modelled by MEDFATE while the top-right panel shows the modelled LAI for 588 
3D-CMCC-FEM (and used by MEDFATE). The middle-up panels (left and right) present annual GPP (gC 589 
m⁻² year⁻¹) as modelled by the MEDFATE and 3D-CMCC-FEM, respectively. The middle-down panels 590 
(left and right) depict annual LE (MJ m⁻² yr⁻¹) modelled by the MEDFATE and 3D-CMCC-FEM, 591 
respectively. The bottom panels (left and right) depict the annual minimum of NSC concentration (%) at 592 
the stand and tree level, respectively, as modelled by the 3D-CMCC-FEM. Different plot management 593 
strategies are represented by distinct line styles: solid lines with circles for ‘Control’ plots (‘no 594 
management’), dotted lines with squares for ‘Innovative’ plots, dashed lines with stars for ‘Traditional’ 595 
plots (Shelterwood) and dash-dotted lines with triangles for ‘SM’ management. Climate scenarios are 596 
indicated by line colours: black for ‘Hist’ climate data (2010-2022), orange and blue for RCP4.5 and 597 
RCP8.5 climate (2060-2070), respectively. 598 
 599 
 600 
4. Discussion 601 

First, this study evaluated the performance of two different process-based models in 602 

simulating different beech stands across Europe, starting to the north of Europe and 603 

moving towards the south under different environmental conditions. Secondly, the 604 

study focused on models’ sensitivity to management and different management 605 

options and considering different climatic conditions in two specific beech forest 606 

stands in the north and south of the Italian peninsula. 607 

4.1 Model evaluation 608 

To assess the models' accuracy in predicting C and H2O fluxes, we compared the GPP 609 

and the LE data obtained from the EC towers. Both models predicted GPP and LE 610 

accurately and ensured a good range of general applicability of both models (Kramer et 611 

al., 2002, Verbeeck et al., 2008). The 3D-CMCC-FEM model seems to slightly 612 

overestimate GPP daily values along latitudinal gradients starting from the north (DK-613 

Sor) to the south (IT-Col), as already found in Collalti et al. (2016). MEDFATE, in 614 

contrast, showed a slight overestimation of GPP only at IT-Col site. The LE predicted by 615 

3D-CMCC-FEM is more accurate than MEDFATE prediction for DK-Sor and FR-Hes 616 

sites but not in IT-Col site in which 3D-CMCC-FEM has shown to underestimate 617 
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compared to the observed EC values. For MEDFATE the underestimation of LE was 618 

observed in all the evaluation sites.  619 

The spread observed for the GPP and LE fluxes between the two models may be 620 

attributed to the different assumptions that govern stomatal regulation since both 621 

models use the Farquhar-von Caemmerer-Berry biochemical model to calculate 622 

photosynthesis. The over or underestimation of the flows estimated by the models 623 

both for GPP and the LE compared to the data observed from the EC towers can be 624 

attributed either to the presence of the understory (although commonly sporadic in 625 

mature beech stands), which was not considered in the simulations by both models 626 

and to errors on daily measurement by EC technique (Loescher et al., 2006) or 627 

because a not perfect fit in the modeled seasonality (i.e., the begin and the end of the 628 

growing season) (Richardson et al., 2010). However, the leaf phenological pattern of 629 

the European beech in these sites is well represented by the two models in almost all 630 

of the years according to EC data as shown in supplementary materials (see Fig. S4, S5, 631 

S6, S7, S8, S9, and Fig S10). It is important to note that we did not specifically calibrate 632 

the model parameters from the eddy covariance data for each site. Instead, as Dufrêne 633 

et al. (2005) already did, both models were parameterized using existing literature 634 

values and with one set of parameter values for all sites. 635 

 636 

4.2 Climate change and forest management at the Cansigio and Mongiana site 637 

The pre-Alpine site of Cansiglio showed slight differences in the fluxes (i.e., GPP and LE) 638 

between three different management practices and the three climates used. Future 639 

climate is expected to be higher temperature if compared to the historical one, with 640 

MAT higher of about 3.93°C under RCP4.5 and 4.95°C under RCP8.5 for the Cansiglio 641 

site and 4.52°C under RCP4.5 and 5.42°C under RCP8.5 at the Mongiana site. Similarly, 642 

MAP is expected to be 510 mm lower under RCP4.5 and 602 mm lower under RCP8.5 643 
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at the Cansiglio site, while 902 mm lower under RCP4.5 and 914 mm lower under 644 

RCP8.5 at the Mongiana site. 645 

Regarding management, the response of the 3D-CMCC-FEM to the removal of a 646 

percentage of the basal area from the stand led to a decrease in GPP in the ‘Traditional’ 647 

cutting and an even greater extent, in the ‘Innovative’ cutting compared to the ‘Control’ 648 

(i.e., no management). Similarly to 3D-CMCC-FEM, the MEDFATE model simulates 649 

slight differences in fluxes amount (e.g., lower values for ‘Traditional’ and ‘Innovative’ 650 

cutting than ’Control’ plots) between the management regimes in the plots. These 651 

results align with those of Guillemot et al. (2014), who observed a slight decrease in 652 

GPP in managed compared to unmanaged temperate beech forests in France under 653 

different thinning regimes. However, differences were observed in both models under 654 

the three different climates used in the simulations. GPP increased from the ‘Hist’ 655 

climate to RCP4.5 and reached the maximum for RCP8.5, respectively. This suggests a 656 

plastic response (e.g., photosynthesis and stomatal response) of the stands, as 657 

simulated by models, to harsher conditions, indicating, potentially, a high drought 658 

acclimation capacity (Petrik et al., 2022) and increased GPP because of the so-called 659 

‘atmospheric CO2 fertilization’ effect as also found by de Wergifosse et al. (2022) and 660 

Reyer et al. (2013), especially in sites with no apparent water limitation both under 661 

current and projected future climate conditions. The anisohydric behavior of Fagus 662 

sylvatica L. results in prolonged stomatal opening relative to isohydric species, 663 

although Puchi et al. (2024) recently found large variability in European beech 664 

responses, maintaining prolonged photosynthetic activity, though this response is 665 

modulated by summer precipitation and the availability of soil water storage 666 

(Leuschner et al., 2021; Baudis et al., 2015). However, for high-altitude stands, growth 667 

could be negatively affected under warmer conditions, as suggested by Chmura et al. 668 

(2024). The LE results for the 3D-CMCC-FEM showed lower values over the simulation 669 
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period for managed stands than unmanaged ones showing lesser sensitivity to forest 670 

management if compared to MEDFATE. However, under the RCP4.5, the LE values 671 

were higher compared to both the ‘Hist’ climate and the RCP8.5 one due to greater 672 

annual cumulative precipitation than the RCP8.5 and higher, on average, temperatures 673 

than the ‘Hist’ scenario. 674 

Conversely, the MEDFATE model was shown to be more sensitive to climate, with a 675 

clearer distinction between the ‘Hist’ climate, the RCP4.5 and RCP8.5 climates, with 676 

higher and nearly equal values in the harsher conditions (i.e., RCP4.5 and RCP8.5 677 

climates), with slight differences in the management treatments as obtained by 3D-678 

CMCC-FEM. The Non-Structural carbon (NSC) amount showed the highest values in 679 

‘Innovative’ plots, followed by ‘Traditional’ plots, and the lowest values in ‘Control’ 680 

plots, suggesting a benefit in carbon stock accumulation with more carbon going for 681 

carbon biomass and less for reserve-replenishment for these stands under 682 

management interventions. However, NSC levels remain nearly the same for the three 683 

climate scenarios throughout all the simulation years. It is important to note that 684 

MEDFATE simulated an initial loss of stem conductance under the climate scenarios, 685 

indicating the onset of water stress for the stand. Although in RCP4.5 this is negligible, 686 

in RCP8.5 PLCstem values reach a maximum xylem cavitation value of about 40% in the 687 

eighth year of simulation for managed plots while for ‘Control’ plots in the eighth, ninth, 688 

and twelfth years, highlighting potential benefits of management to reduce drought 689 

stress (Giuggiola et al., 2018; Schmied et al., 2023). 690 

The GPP at the southern Apennine site of Mongiana showed a decrease under RCP4.5 691 

and RCP8.5 scenarios when simulated by the 3D-CMCC-FEM model as a result of 692 

harsher environmental conditions, as also resulted in the study by Yu et al. (2022), in 693 

which the productivity and then the growth of European beech in southern regions are 694 

expected to decrease as affected by more severe climate conditions such as decreased 695 
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precipitation and increased in air temperature (Tognetti et al., 2019). Indeed, the 696 

increase in air temperature, a reduction in soil water availability, and the rise in vapor 697 

pressure deficit (VPD) lead to earlier stomatal closure, increased mesophyll resistance, 698 

and elevated abscisic acid production (Kane and McAdam, 2023), all of which 699 

contribute to a decrease in the carbon assimilation rate (Priwitzer et al., 2014; Grossiord 700 

et al., 2020). Specifically, GPP is higher under ‘Hist’ climate conditions, decreases under 701 

the RCP4.5, and ultimately reaches even lower values under the RCP8.5. Under the 702 

RCP8.5 at the fifth year of simulation, the stand in the ‘Control’ plot is simulated to die 703 

due to carbon starvation. The annual decline in NSC (Fig. 5) due to an imbalance 704 

between carbon uptake (photosynthesis) and the demands for growth and respiration 705 

suggests that the trees are unable to replenish their carbon reserves. The depletion of 706 

NSC reserves may ultimately disrupt processes such as osmoregulation and phenology 707 

(Martínez-Vilalta et al., 2016), potentially leading to stand defoliation and/or mortality. 708 

The management options did not show changes in GPP under the ‘Hist’ climate. 709 

However, the increase of GPP was observed under the RCP4.5 in the plots where 710 

‘Innovative’ and ‘Traditional’ cutting occurred, although no differences were observed 711 

between them. For instance, the same increase in GPP was reported by Fibbi et al. 712 

(2019) for beech forest under climate change scenarios in Italy. The thinning reduces 713 

the LAI and increase the soil water availability, which positively influence stomatal 714 

conductance and carbon assimilation, providing an acclimation mechanism to drought 715 

during periods of water scarcity (Lüttschwager and Jochheim, 2020; Diaconu et al., 716 

2017). 717 

In contrast, the more intense cutting exhibited even lower GPP values than the ‘Control’ 718 

plots. This is likely due to the overly intense thinning, which contrasts the microclimate 719 

effects within this forest stand, reducing the potential to offset climate warming at the 720 

local scale (Rita et al., 2021). Heavy thinning, on the other hand, can increase light 721 
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penetration, soil evaporation, and wind speed, thereby heightening tree sensitivity to 722 

vapor pressure deficit under dry conditions (Schmied et al., 2023; Simonin et al., 2007). 723 

LE decreased with the decrease in precipitation under the RCP4.5 and RCP8.5 climate 724 

scenarios compared to the ‘Hist’ climate. There were no significant differences in LE 725 

among the various management regimes. For the MEDFATE model, negligible or no 726 

differences in GPP were observed under all the climates among various management 727 

options. Although the GPP values estimated by the MEDFATE model under the RCP4.5 728 

and RCP8.5 are similar to those obtained from the 3D-CMCC-FEM model, a closer 729 

analysis of the daily outputs (data not shown) reveals that trees photosynthesize until 730 

the end of July, after which they experience significant embolism (i.e., maximum value 731 

of  100%), as indicated by the PLCstem graph, indicating that the decrease in 732 

precipitation led to summer soil moisture depletion and lethal drought stress levels. 733 

Furthermore, the ‘Control’ plots experienced mortality even before reaching the 734 

summer period. In recent decades, prolonged drought stress in Mediterranean 735 

mountain regions has significantly reduced the productivity of beech forests, resulting 736 

in a decline in Basal Area Increment (BAI) and overall growth (Piovesan et al., 2008). It 737 

is also important to note that under ‘Hist’ climate conditions, the MEDFATE model 738 

indicated a stem embolization loss ranging from approximately 10% to 45% during the 739 

drought period (i.e., 2018-2020) in Europe (Italiano et al., 2024; Thom et al., 2023, 740 

Lombardi et al., 2023). The embolization was more pronounced and long-lasting in the 741 

‘Control’ plots than the managed ones. The same trends were obtained for LE. 742 

 743 

5. Conclusion 744 

These two process-based models provide robust evidence for their application in 745 

estimating fluxes, consistent with long-term EC tower measurements in European 746 

beech forests. Despite the minimal parametrization effort to align the two models and 747 

the avoidance of site-specific parameters, reliable results can still be obtained, as 748 
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confirmed by the outputs from the Sorø, Hesse, and Collelongo sites. Regarding the 749 

sub-Alpine Cansiglio site, although water limitation does not significantly impact fluxes 750 

or the health of the forest under Moderate climate conditions (RCP4.5), a potential 751 

concern is the embolization predicted by the MEDFATE model under the Hot climate 752 

(RCP8.5) at this site, despite similar levels of precipitation. The high susceptibility of 753 

beech forests at the southern Apennine site of Mongiana to more severe (i.e., hotter 754 

and drier) climatic conditions could lead to the collapse of this forest ecosystem, even 755 

with the application of management options to reduce competition. This necessitates 756 

strategic management planning, including the ability to project (e.g., with forest 757 

models) and evaluate future forest conditions for better management schemes (Taylor 758 

et al., 2009). However, the ability of these forests to survive or resist the impacts of 759 

climate change may not depend solely on density reduction interventions. Prioritizing 760 

the exploration of alternative sustainable management strategies to promote carbon 761 

sequestration in both above-ground biomass and soil is crucial for enhancing climate 762 

change mitigation efforts. Additionally, evaluating silvicultural plans such as the 763 

introduction of complementary species can improve the resilience of vulnerable beech 764 

ecosystems. A modeling approach, similar to the one used in this study, offers a 765 

valuable tool for assessing these alternative strategies and refining forestry 766 

management practices. By integrating these approaches, we can strengthen the long-767 

term sustainability of forests while preserving the ecological balance of vulnerable 768 

regions. 769 

 770 

 771 

 772 

 773 

 774 
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