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A B S T R A C T

Grasslands are worldwide spread ecosystems involved in the provision of multiple functional services, including 
biomass production and carbon storage. However, the increasingly adverse climate and non-optimised farm 
management are threatening these ecosystems. In this study, the original semi-mechanistic remotely sensed- 
driven VISTOCK model, which simulates grass growth as limited by thermal and water stress, was modified 
and integrated with the RothC model to simulate the ecosystem fluxes. The new model (GRASSVISTOCK) showed 
satisfactory performance in simulating above-ground biomass (AGB) in dry matter (d.m.) and fractional tran
spirable soil water (FTSW) along Alps (AGB, RMSE = 85.39 g d.m. m− 2; FTSW, RMSE = 0.21) and Mediterranean 
(AGB, RMSE = 136.84 g d.m. m− 2; FTSW, RMSE = 0.13) grasslands. Also, GRASSVISTOCK was able to simulate 
the net ecosystem exchange (NEE - RMSE = 0.03 Mg C ha− 1), the gross primary production (RMSE = 0.04 Mg C 
ha− 1), the ecosystem respiration (RMSE = 0.04 Mg C ha− 1) and the evapotranspiration (RMSE = 1.44 mm), 
where these observations were available (Alps). The model was applied under present and two climate datasets 
characterised by temperature increase and precipitation decrease (+2 ◦C temperature, -10 % precipitation) and 
reference or enriched CO2 concentration (394 vs. 540.5 ppm) scenarios. The results showed that, while changes 
in temperature and precipitation alone had a negative impact by increasing NEE (+0.69 Mg C ha− 1) and 
decreasing total biomass (-0.20 Mg d.m. ha− 1) in the reference CO2 scenario, the enriched atmospheric CO2 
concentration partially smoothed the NEE trend (+0.27 Mg C ha− 1) and increased total biomass (+0.60 Mg d.m. 
ha− 1) compared to the present period. It is concluded that the GRASSVISTOCK model represents a first step 
towards an integrated tool for estimating the performance of the agro-pastoral systems in terms of biomass 
production, water and carbon fluxes, in the face of ongoing climate change.

1. Introduction

Grasslands are terrestrial biomes that cover ~26 % of the Earth’s 
surface and contribute to the provision of several ecosystem services (e. 

g. carbon sequestration, biomass production, biodiversity conservation, 
etc.; Dibari et al., 2021; FAO, 2019; Zhao et al., 2020). Due to their 
capacity to store carbon (~34 % of the global terrestrial carbon), these 
biomes play a key role in climate change mitigation (Wang et al., 2021). 
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In particular, their potential to increase carbon sequestration (e.g. 0.47 
Mg C ha− 1 y− 1; Conant et al., 2017) is highly dependent on the system 
management (e.g. fertilisation, irrigation, grazing/sowing/mowing, 
etc.) and climate (Bai and Cotrufo, 2022; Mayel et al., 2021). In this 
context, global warming and the high environmental impact of grass
land intensification management (e.g. overgrazing) are expected to limit 
or reverse (from carbon sink to source) the potential carbon sequestra
tion capacity of these environments (Chabbi et al., 2023; Chang et al., 
2021a).

For assessing the current carbon sequestration capacity of grasslands, 
to optimize farm management, and to identify new adaptation and 
mitigation strategies against climate change, biogeochemical models 
represent useful tools to simulate soil carbon turnover in agro- 
ecosystems (e.g. ICBM, Andren and Katterer, 1997; CENTURY, Parton 
et al., 1994; RothC, Coleman and Jenkinson, 1996; Brilli et al., 2017). 
These models are run at specific time steps (e.g. RothC was originally 
run at a monthly time step) and consider the decomposition rate of soil 
organic carbon (SOC), as affected by abiotic and biotic factors (soil 
moisture, temperature, vegetation cover and manure; Coleman and 
Jenkinson, 1996, Parton et al., 1994). However, some of these soil 
carbon models do not simulate the vegetation growth and litterfall 
during the growing season. Therefore, observations or a priori estimates 
of carbon litter are used as model inputs or to compare the results from 
model estimates, which in turn limits the spatial application and future 
predictions of these tools (Coleman and Jenkinson, 1996; Kaonga and 
Coleman, 2008). This limitation can be overcome by coupling a plant 
growth model with a soil carbon model to improve the simulation of 
daily grass biomass accumulation and leaf senescence (e.g. DAYCENT 
and PaSim with CENTURY submodel or DNDC; Li et al., 1992a,b; Parton 
et al., 1998; Riedo et al., 1998; Yin et al., 2020). In these models, sim
ulations of plant growth and biomass accumulation, as affected by 
seasonal abiotic stresses (e.g. thermal and water stress), allow the dy
namic of vegetation development, litterfall and root senescence to be 
taken into account, thereby improving estimates of carbon input to soil 
and ecosystem carbon fluxes. Thus, the integration of both approaches is 
expected to produce twofold advantages: (i) to improve the estimation 
of the plant senescent biomass, and (ii) to allow the simulation of the 
SOC turnover (Del Grosso et al., 2012).

The modelling solutions proposed so far have been shown to be able 
to simulate carbon fluxes, SOC and net accumulated biomass. When 
applied in a future climate, these tools may allow the evaluation of 
adaptation (i.e. reducing negative impacts on biomass accumulation) 
and mitigation strategies (i.e. increasing net ecosystem carbon uptake 
and/or soil carbon stocks; Bellini et al., 2023a; Brilli et al., 2023; Sándor 
et al., 2020; Zani et al., 2023) by considering the effects of 
agro-management practices (e.g. mowing, grazing, irrigation, etc.), 
which play a key role in vegetation growth and, consequently, in 
ecosystem carbon sequestration and emissions (Argenti et al., 2022). 
However, despite their good performance at simulating agro-pastoral 
systems (Brilli et al., 2023; Khalil et al., 2020; Sándor et al., 2020), 
the applicability of these models (e.g. DAYCENT, PasSim, DNDC) is still 
limited because they are not easy to parametrize. Indeed, the relatively 
high number of parameters (Laub et al., 2023; Rafique et al., 2015) and 
the detailed description of multiple processes (i.e. DAYCENT includes 
soil water balance, plant allocation, soil carbon turnover, nutrient 
mineralisation, N emission, CH4 oxidation sub-models) increases the 
complexity of the model, its calibration and the uncertainty of the results 
(Barneze et al., 2022; Gurung et al., 2020; Necpálová et al., 2015). In an 
attempt to develop a simplified semi-mechanistic approach charac
terised by a simpler model structure (i.e. only biomass growth and water 
balance sub-models) and by limiting the number of parameters to be 
calibrated (less than 10), the VISTOCK model has recently proposed by 
Bellini et al. (2023b) to simulate grassland production. Taking advan
tage of this parsimonious architecture, the aim of this work was to 
extend the capability of the VISTOCK model to estimate carbon and 
water fluxes for the whole ecosystem. For this purpose, the original 

structure of the VISTOCK model was modified by replacing the remotely 
sensed NDVI-derived leaf area index (LAI) with a prognostic LAI simu
lation, which is the basis for estimating intercepted radiation, GPP, grass 
respiration and net biomass production on a daily time-step. Further
more, this modified version of VISTOCK (GRASSVISTOCK) was coupled 
with a carbon model for SOC turnover (RothC; Coleman and Jenkinson, 
1996) for a comprehensive estimation of the carbon fluxes from the 
system. GRASSVISTOCK was calibrated and tested to estimate the main 
grassland carbon fluxes (net ecosystem exchange, NEE; gross primary 
production, GPP and ecosystem respiration, RECO) and biomass accu
mulation in contrasting environments (from the Alps to the Mediterra
nean regions), taking into account the impact of the management 
practices (no management, periodic mowing). Finally, the calibrated 
version of the GRASSVISTOCK model was applied to the same testing 
sites under future climates in order to outline the possible consequences 
of a warmer and drier climate on NEE and biomass production in warm 
(Mediterranean) and cold (Alpine) regions.

2. Materials and methods

2.1. Study area

The study area includes three sites located across an altitudinal 
gradient in the Swiss (CH-Cha: 47.2102 ◦N, 8.4104 ◦E, 393 m), Austrian 
(AT-Neu: 47.1167 ◦N, 11.3175 ◦E, 970 m) and Italian (IT-Tor: 45.8444 
◦N, 7.5781 ◦E, 2160 m) Alpine chain. More specifically, CH-Cha, AT-Neu 
and IT-Tor sites are located in the hilly (300–800 m above sea level, a.s. 
l.), montane (800–1850 m a.s.l.) and sub-alpine (1500–2500 m a.s.l.) 
Alps elevation belt, respectively. On the other hand, the Mediterranean 
sites are located in central-northern Italy (S. Ilario and Bibbiano, 
renamed “S.Ilario”: 44.6885 ◦N, 10.4781◦ E, ~97 m, on average for the 
five farms located in the area; Borgo San Lorenzo, renamed “Borgo”: 
43.9536 ◦N, 11.3487◦ E, 200 m; Marradi: 44.0810 ◦N, 11.6327◦ E, 600 
m; Fig. 1). In particular, the S. Ilario site includes five farms (A: 
44.6590◦N, 10.4420◦E; B: 44.7080◦N, 10.4901◦E; C: 44.6531◦N, 
10.4490◦E; P: 44.7550◦N, 10.4910◦E; and S: 44.6660◦N, 10.5170◦E), 
located at a maximum distance of 12 km from each other and charac
terised by similar climate.

The climate in grasslands located in Alpine chain is temperate (CH- 
Cha), warm summer continental (AT-Neu) and intra-alpine semi-conti
nental (IT-Tor; Table 1; Köppen, 1936; https://meta.icos-cp.eu/resou 
rces/stations/ES_IT-Tor; https://fluxnet.org/, Pastorello et al., 2020), 
with mean annual temperature and precipitation ranging from 2.9 ◦C 
(IT-Tor) to 9.5 ◦C (CH-Cha) and from 852 mm (AT-Neu) to 1136 
(CH-Cha) mm, respectively (https://fluxnet.org/). Although character
ized by different climates, we defined CH-Cha, AT-Neu and IT-Tor sites 
as “Alpine” by referring to their belonging to the Alpine chain and to 
distinguish them from the Mediterranean sites.

The Mediterranean sites, instead, are characterised by a transitional 
humid subtropical - Mediterranean climate with mean annual temper
ature and precipitation ranging from 12 ◦C (Marradi) to 14 ◦C (S.Ilario) 
and from 752 mm (S.Ilario) to 1330 mm (Marradi), respectively 
(Table 1; Bellini et al., 2023b; Köppen, 1936; https://www.arpae.it/).

All the study sites were characterised by different vegetation species 
composition and management practices. In particular, the vegetation of 
the managed CH-Cha and AT-Neu sites was characterized by a mixture 
of Italian ryegrass (Lolium multiflorum, Lam.), white clover (Trifolium 
repens L.; CH-Cha), and dominant graminoids (Dactylis glomerata L., 
Festuca pratensis Huds., Phleum pratense L., Trisetum flavescens L.), le
gumes (Trifolium repens L., Trifolium pratense L.) and forbs (Ranunculus 
acris L., Taraxacum officinale, G.H. Weber ex Wiggers, Carum carvi L.) 
species (AT-Neu). Conversely, the species composition of the unman
aged grassland of IT-Tor is characterised by Nardus stricta L. as the 
dominant vegetation, followed by Poa alpina L., Trifolium alpinum L., 
Arnica montana L. and Ranunculus pyrenaeus L. species. In the Mediter
ranean area, the farms located at S. Ilario site are characterised by 
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permanent grasslands, where the dominant vegetation is composed by 
Italian ryegrass (Lolium multiflorum, Lam.), white clover (Trifolium 
repens, L.) and other forbs (Convolvulus arvensis, L., Taraxacum officinale, 
G.H. Weber ex Wiggers). Finally, in the sown pastures of Borgo and 
Marradi sites the vegetation is mainly composed by graminoids (Lolium 
spp., Dactylis glomerata L., Festuca arundinacea Schreb., Phleum pratense 
L.), legumes (Trifolium pratense L., Trifolium repens L., Lotus corniculatus 
L., Onobrychis viciifolia Scop.) and forbs with the occasional presence of 
shrubs (mainly Rubus ulmifolius Schott).

The agronomic practices applied in the Alpine area were 

characterised by mowing (CH-Cha and AT-Neu) and seasonal sheep 
grazing (CH-Cha), while no management practices were applied in IT- 
Tor. In the Mediterranean area, the management practices applied in 
S.Ilario were mainly characterised by mowing and irrigation (surface 
flooding and sprinklers; Dal Prà et al., 2023). Finally, Borgo and Marradi 
sites were characterised by mowing and beef cattle grazing, with Borgo 
being characterised by two areas with different management (A and B; 
Bellini et al., 2023b).

In terms of soil conditions, the three Alpine sites were classified as 
sandy loam soils (Table 1; Pintaldi et al., 2016; Wohlfahrt et al., 2008; 

Fig. 1. Location of the study sites (CH-Cha, AT-Neu, IT-Tor, S.Ilario, Borgo and Marradi). The red circle around S. Ilario site is used for describing the area in which 
the five farms are located.

Table 1 
Main features (Weather, Management, Soil) of the study sites. * Outliers have been removed. ** Avg. between 5 farms. *** Avg. of soil texture collected across 15 sites 
at 15–30 cm soil depth; Dal Prà et al. (2023).

Component Variable Unit Site

CH-Cha AT-Neu IT-Tor S. Ilario Borgo (A & B) Marradi

Weather

Latitude; Longitude Decimal degrees 47.2102; 
8.4104

47.1167; 
11.3175

45.8444; 
7.5781

44.6885; 
10.4781**

43.9536; 
11.3487

44.0810; 
11.6327

Altitude m a.s.l. 393 970 2160 97** 200 600
Period Years 2005–2014* 2002–2012* 2012–2018 2017–2018 2020–2021 2020–2021
Avg. Tmax ◦C 34 31.6 21.9 37.75 38.2 34.5
Avg. Tmin ◦C -13.75 -17.5 -16.7 -10.35 -6.3 -4.1
Avg. Tmean ◦C 9.8 7.4 3.6 13.9 13.9 13.1
Annual Prec. Mm 1136 666 914 672 924 1274

Management

Mowing n. of avg. annual 
operations

5 3 – 5 1 1

Grazing

Type; Avg. stocking rate, 
Animal ha− 1

Sheep; 24 – – – Cattle; 1.43 Cattle; 3.5

Avg. Period (months) Apr and Nov – – – from Apr to 
Nov

from May to 
Aug

Irrigation Avg. water amount per 
operations; m3

– – – 1877 – –

n. of avg. annual 
operations

– – – 5 – –

Soil

Topsoil Soil Organic 
Carbon (SOC)

Mg C ha− 1 74.1 (30 cm) 78.83 (20 cm) 64.7 (20 cm) – 79.87 (20 cm) 103.66 (20 
cm)

Bulk Density g cm− 3 1.1 1.44 0.95 – 1.39 1.17
Clay % 21 5.24 13.07 37.8*** 34.7 35.2
Sand % 46.3 53.05 45.2 10.3*** 27.4 21.9
Silt % 32.7 41.71 41.73 52*** 37.9 42.9
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Feigenwinter et al., 2023). The five farms in S.Ilario site were charac
terised by silty clay loam texture at 15–30 cm soil depth (Table 1; Dal Prà 
et al., 2023). Considering the similar pedo-climatic conditions of the five 
farms in S.Ilario, they were all considered as a single unit and jointly 
calibrated. However, the specific agronomic practices were applied ac
cording to the schedule of each farm. Finally, Borgo and Marradi showed 
clay loam soil characteristics (Table 1; Bellini et al., 2023b). Specifically, 
the weather, management and soil conditions of the sites are reported in 
Table 1.

2.2. Observed data

Daily observed weather data (air temperature, ◦C; precipitation, mm 
and global solar radiation, MJ m− 2 d− 1), the vapor pressure deficit (VPD, 
hPa) and daily eddy covariance (EC) measurements (NEE, g C m− 2 d− 1; 
GPP, g C m− 2 d− 1 and RECO, g C m− 2 d− 1) for CH-Cha (2005–2014), AT- 
Neu (2002–2012) and IT-Tor (2012–2018) sites were collected from the 
FLUXNET dataset (Baldocchi et al., 2001; Pastorello et al., 2020; 
https://fluxnet.org/). The reference values of NEE, GPP and RECO (g C 
m− 2 d− 1), based on a variable threshold of friction velocity (u*; 
VUT_REF) and the nighttime method (NT), were selected as reference 
observed data in all three Alpine sites (Pastorello et al., 2020; Reichstein 
et al., 2005). The NEE, GPP and RECO values were then converted from 
g C m− 2 d− 1 to Mg C ha− 1, and unreliable observations were removed 
from the datasets (e.g. NA values and/or according to the quality control 
flag, available in FLUXNET dataset, Pastorello et al., 2020). On the other 
hand, maximum and minimum air temperature ( ◦C) were extracted 
from the hourly temperature of the FLUXNET dataset, while the daily 
snow cover data (0 = no snow cover; 1 = snow cover) was simulated 
using the snowMAUS model (Trnka et al., 2010), for all datasets except 
for the IT-Tor, where this information was included by the data provider.

For the Mediterranean sites, the daily weather data (maximum and 
minimum air temperature, ◦C and precipitation, mm) of the closest 
weather stations in S.Ilario area were collected from Dext3r web 
application of the Arpae-Simc regional service of Emilia-Romagna dur
ing the period 2017–2018 (https://simc.arpae.it/dext3r/). For this site, 
the daily global solar radiation (MJ m− 2 d− 1) was estimated using the 
Hargreaves method (Hargreaves and Samani, 1982). Finally, the daily 
weather data (maximum and minimum air temperature, ◦C and pre
cipitation, mm) for Borgo and Marradi sites were collected during 
2020–2021 from Servizio Idrologico Regionale of Tuscany region 
dataset (SIR, https://www.sir.toscana.it/), and the daily global solar 
radiation (MJ m− 2 d− 1) was estimated by Bellini et al. (2023b) based on 
the approach proposed by Bristow and Campbell (1984) in the “sirad” 
package in R software (Bojanowski, 2016).

Leaf area index (LAI; m2 m− 2), above-ground biomass (AGB; g d.m. 
m− 2) and soil water content (SWC, m3 m− 3) measurements were avail
able for both Alpine and Mediterranean sites. LAI data were obtained for 
CH-Cha (2010–2011; https://fluxnet.org/), AT-Neu (2002–2006; 
Wohlfahrt et al., 2008), IT-Tor (2012–2018; Filippa et al., 2015), Borgo 
A and B and Marradi (2020–2021; Bellini et al., 2023b) sites, while AGB 
data were collected for CH-Cha (2009–2011; https://fluxnet.org/), 
IT-Tor (2012–2018; Filippa et al., 2015), S. Ilario (amount of biomass 
obtained from each cut in 2017–2018; Dal Prà et al., 2023) and Borgo A 
and B and Marradi (2020–2021; Bellini et al., 2023b). Additionally, the 
SWC data were measured with Theta probe M1, Delta-T, UK in AT-Neu 
(2002–2012) and with CS-616, Campbell Scientific in IT-Tor 
(2012–2018) sites (https://fluxnet.org/; Bellini et al., 2023b). The 
SWC data were used for deriving fractional transpirable soil water 
(FTSW, the ratio between the actual water content and total transpirable 
soil water) at daily time step. Soil organic carbon content (SOC) mea
surements were derived from total organic carbon (TOC, g kg− 1) and soil 
organic matter (SOM, %) and quantified in 74.1 Mg C ha− 1 at 30 cm in 
CH-Cha, 78.3 Mg C ha− 1 at 20 cm in AT-Neu and 64.7 Mg C ha− 1 at 20 
cm in IT-Tor (Feigenwinter et al., 2023; Pintaldi et al., 2016; Seeber 
et al., 2022). Finally, SOC ranged from 79.87 Mg C ha− 1 to 103.66 Mg C 

ha− 1 in Borgo and Marradi sites (https://soilgrids.org, Poggio et al., 
2021; Table 1).

2.3. Model description

GRASSVISTOCK is a semi-mechanistic model which explicitly sim
ulates grass growth and daily LAI dynamic, biomass accumulation and 
partitioning, including water and carbon fluxes of agro-pastoral systems. 
This model represents a modified version of the original VISTOCK model 
(Bellini et al., 2023b), a diagnostic model where LAI is derived from 
Normalized Difference Vegetation (NDVI; Rouse et al., 1974). In this 
new version, an alternative modeling strategy was implemented for 
simulating LAI development.

For each day, the net increase in LAI (the green LAI, GLAI, m2 m− 2 

d− 1) is calculated as the difference between the daily LAI growth rate 
(LAIrate, m2 m− 2 d− 1) and the senescent LAI (LAIsen, m2 m− 2 d− 1; Eq.1). 

GLAI = LAIrate − LAIsen (1) 

LAIrate (Eq. (2)) is calculated considering the Net Primary Production 
(NPP; g m− 2 d− 1) partitioned according to a coefficient (LAIpart) and the 
ratio of leaf area to dry mass (specific leaf area, SLA, m2 g− 1; assuming 
that the entire AGB is invested in leaf area): 

LAIrate = NPP⋅LAIpart⋅SLA (2) 

Accordingly, total LAI (LAIgrass, m2 m− 2) of a specific period is 
calculated as daily accumulation of GLAI from the beginning of the 
simulation until the end of the considered period (Eq. 3). 

LAIgrass =
∑n

1
GLAI (3) 

The NPP is partitioned to AGB according to the coefficient BIOpart 
(LAIpart = BIOpart) while the daily below ground biomass (BGB, g m− 2 

d− 1) is calculated according to Eq. 4. 

BGB = NPP⋅
(
1 − BIOpart

)
(4) 

A fixed turnover factor was applied to BGB in order to simulate the 
amount of senescent matter (Table 2).

The NPP is calculated as the difference between gross primary pro
duction (GPP; gC m− 2 d− 1) and autotrophic respiration (Ra; gC m− 2 d− 1) 
and then converted from gC m− 2 d− 1 to g d.m. m− 2 d− 1. GPP is depen
dent on the amount of photosynthetically active radiation (PAR, MJ d− 1) 
intercepted by LAI (fraction of the photosynthetically active radiation, 
fPAR) and a conversion factor of daily intercepted PAR to carbon 
assimilation (maximum radiation use efficiency, εmaxref; g C MJ− 1). 
Thermal and water stress factors (Tcor and WScor; Maselli et al., 2013; 
Veroustraete et al., 2004), and snow cover (SNOW) are scalars to reduce 
maximum potential to actual radiation use efficiency (Eq. 5). 

GPP = εmaxref ⋅PAR⋅fPAR⋅Tcor⋅WScor⋅SNOW (5) 

fPAR is estimated through the Beer’s Law equation based on light 
extinction coefficient for vegetation cover here described by LAIgrass 
(Sinclair, 2006; Bellini et al., 2023b).

Tcor is a scalar that ranges from 0, GTmin (no vegetation growth), to 1, 
GTopt (optimal vegetation growth; Heinsch et al., 2003; Eqs. 6 and 6.1) 
depending on daily minimum temperature. 

Tcor = a⋅ Tmin + b (6) 

Tcor =

⎧
⎨

⎩

0
Tcor
1

Tcor < 0
0 ≤ Tcor ≤ 1

Tcor > 1
(6.1) 

Similarly, WScor is a water stress factor calculated from the soil water 
balance module. The soil water balance is simulated on a soil module 
composed by two layers. In these layers, the soil water dynamic is 
described by considering the water content availability (WCA, i.e., water 
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potentially available between field capacity and wilting point, m3 m− 3), 
the Total Transpirable Soil Water (TTSW; i.e. WCA * rooting depth, mm) 
and the Available Transpirable Soil Water (ATSW, mm; i.e. the amount 
of water really available to the plant). The ratio between ATSW and 
TTSW, defined as Fraction of Transpirable Soil Water (FTSW, unitless), 
which ranges from 0 (no water available for transpiration) to 1 (po
tential water conditions) is used for WScor calculation as limiting factor 
for GPP (Eqs. 7, 7.1). More details on this general framework can be 
found in Sinclair (1986), Bindi et al. (2005), Soltani and Sinclair (2012), 
Moriondo et al. (2019) and Bellini et al. (2023b). 

WScor =
1

1 + a⋅e(b⋅FTSWg)
(7) 

WScor =

⎧
⎨

⎩

0
WScor

1

WScor < 0
0 ≤ WScor ≤ 1

WScor > 1
(7.1) 

ATSW is updated at the end of the day, based on its value on the 
previous day and the positive (precipitation and irrigation; mm) and 
negative (soil evaporation SEVP and plant transpiration TR, mm) budget 
items (Eq. 8). 

ATSWd = ATSWd− 1 + (Precipitation+ Irrigation) − (SEVP+TR) (8) 

Plant transpiration is estimated considering the existing relationship 
with plant assimilation (Tanner and Sinclair, 1983; Soltani and Sinclair, 
2012; Eqs. 9, 9.1) 

TR =
GPP
TE

(9) 

TE =
TECref

VPD
(9.1) 

where TR is daily plant transpiration (mm d− 1), TE is transpiration ef
ficiency which depends on VPD and transpiration efficiency coefficient 

Table 2 
GRASSVISTOCK model parameter list for all study sites. In bold, the values were the same for all sites.

Parameter CH-Cha AT-Neu IT-Tor S.Ilario Borgo A and B Marradi Unit

GRASSVISTOCK model

Leaf area seasonal dynamics

LAIgrassini 0.8 0.8 0.2 2 0.25, 0.5 0.3 m2 m− 2

LeafLife 230 450 164 500 312 200 ◦C days
LAILife.ini 3500 ◦C days
LAIstop.sen 0.9 0.5 0.5 1.5 0.5 0.5 m2 m− 2

LAImin 0.8 0.8 0.1 0.5 0.05 0.05 m2 m− 2

LAIpart 50 %
SLA1 0.021 0.021 0.019 0.021 0.021 0.021 m2 g− 1

Light interception and Biomass accumulation

epmaxref
2 1.65 g C MJ− 1

GTmin
3 -7 -8 -6.13 -6.47 -3 5 ◦C

GTopt
3 1 0.5 12 3.5 12 11.8 ◦C

A 9.49 –
B 15.69 –
TECref 4.5 Pa
cumAGBt0 100 50 100 100 50, 190 70 g m− 2

cumBGBt0 2800 3000 1200 2500 600 1000 g m− 2

Yg
4 0.75 –

km
5 0.0008 0.0003 0.0003 0.0006 d− 1

Biopart 50 %
Rootsen 30 %
CO2ref 394 ppm
b1 0.2 –
b2 0.26 –

Soil characteristics and Water balance

SoilDepth 125 100 100 150 80 80 cm
RootDepth 60 60 50 70 50 60 cm
SoilCDepth 30 20 20 20 20 20 cm
EDEP 30 20 20 20 20 20 cm
WCA 0.2 0.18 0.15 0.2 0.15 0.16 –
AWAFC 2 cm
VPDF 0.35 0.35 0.65 0.56 0.4 0.5 –
sALB 0.9 –
FTSWthr 0.35 –
PRECthr 6 mm

Roth C

Clay 21 5.24 13.07 36* 34.7 35.2 %
DR6 1.44 1.44 0.67 1.44 1.44 1.44 –
kDPM

7 10** y− 1

kRPM
7 0.3** y− 1

kHUM
7 0.02** y− 1

kBIO
7 0.66** y− 1

kIOM
7 0** y− 1

pE 1 –

References: 1Porter and De Jong (1999); 2Maselli et al. (2013); 3Running and Zhao (2019); 4Thornley and Cannell (2000); 5Amthor (1984); 6Coleman and Jenkinson 
(1996); 7Jenkinson et al. (1987, 1992). *Average clay values in S.Ilario: A: 38.2 %, B: 36.8 %, C: 32.3 %, P: 37.8 %, S: 34.7 %.**The annual decomposition rates have 
been rescaled at daily time step.
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(TECref, Pa) that is species dependent. The soil potential evaporation 
(SEVPpot) is calculated using the Penman equation reported in Soltani 
and Sinclair (2012; Eqs. 10, 10.1). 

SEVPpot = GSR⋅SALB⋅(1 − fPAR)⋅
DELT

DELT + 0.68
(10) 

DELT =
5304

(273 + Tmax)2⋅e

(
21.255− 5304

273+Tmax

)

(10.1) 

Where DELT is the slope of saturated vapor pressure versus tem
perature for daily temperature calculated according to Soltani and Sin
clair (2012), GSR is the daily incident solar radiation (MJ m− 2 d− 1), 
SALB is the soil albedo and fPAR is the grass intercepted radiation.

When FTSW is lower than a specific threshold (FTSWTHR), SEVPpot is 
rescaled to actual SEVP as a function of the square root of time since the 
start of the dry spell (DYSE, days) by considering that the evaporation in 
the grass soil layer is different from a wet surface (SEVPpot; Eq. 11). 

SEVP = SEVPpot ⋅
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

DYSE + 1
√ )

−
̅̅̅̅̅̅̅̅̅̅̅̅
DYSE

√
(11) 

Moreover, GRASSVISTOCK accounts for the effect of CO2 atmo
spheric concentration (ppm) on photosynthesis (εmaxref) and transpira
tion efficiency coefficient (TECref) according to the approach proposed 
by Soltani and Sinclair (2012) and Kellner et al. (2017; Eqs. 13-14): 

εmaxCO2 = εmaxref ⋅
[

1.0 + b1⋅ln
(

CO2meas

CO2ref

)]

(13) 

TECCO2 = TECref ⋅
[

1.0 + b2⋅ln
(

CO2meas

CO2ref

)]

(14) 

Where εmaxCO2 and TECCO2 are the maximum radiation use efficiency 
and the transpiration efficiency coefficients, as affected by atmospheric 
CO2 concentration (the so-called “CO2 fertilization effect”), respectively. 
εmaxref and TECref are the maximum radiation use efficiency and the 
transpiration efficiency coefficient at reference atmospheric CO2 con
centration (394 ppm). b1 and b2 are the coefficients regulating the 
response of the εmaxref and TECref to CO2, respectively. CO2meas and 
CO2ref are the measured and the reference atmospheric CO2 concentra
tion values (ppm), respectively. b1 was set following Kellner et al. 
(2017) for assessing the impact of CO2 on εmaxref while b2 was calibrated 
considering the increase of WUE under elevated CO2 concentrations as 
described in the same study of Kellner et al. (2017).

The plant respiration (Ra, gC m− 2 d− 1) is estimated following the 
‘growth-maintenance respiration paradigm’ (GMRP) of Thornley and 
Cannell (2000; Eqs. 15-17): 

Ra = Rg + Rm (15) 

Rg =
(
1 − Yg

)
⋅(GPP − Km⋅BIOtot) (16) 

Rm = Km⋅BIOtot (17) 

Where Rg and Rm are the growth and maintenance respiration, 
respectively. Yg is the growth yield (kg structural C · kg substrate C− 1), 
Km is the maintenance coefficient (d− 1) and BIOtot is the total dry mass 
(gC m− 2).

Mowing, grazing and irrigation events were included in the simula
tions according to the relevant information provided for each site. For 
AT-Neu and CH-Cha sites, the mowing was simulated according to the 
information indicated in the “mowing management file”, which reports 
the year, day of year (DOY) and reduction (%) in LAI and AGB.

Similarly, grazing is applied according to the information reported in 
the “grazing management file” (Year, DOYini, DOYend, Stocking rate, 
potential and actual feeding), where AGB reduction during the grazing 
period (DOYini and DOYend) was achieved by considering the stocking 
rate (animal m− 2) and the daily dry matter biomass intake of the animals 

(g animal− 1 d− 1; actual feeding). The difference between potential and 
actual feeding was determined by the decrease of animal feeding in the 
pasture, and the eventual integrations for supporting animal diet during 
the season. Finally, irrigation is applied following the information pro
vided in the “irrigation management file” (Year, DOY and Water 
Amount, mm), which allows simulating the effect of the prompt water 
input on soil water content during the season. The information about 
management is reported in Table 1.

To account for soil carbon dynamics, GRASSVISTOCK model was 
integrated with the RothC soil model (Coleman and Jenkinson, 1996) as 
available in SoilR package for the R software environment (v. 4.2.2, R 
Core Team 2022; Sierra et al., 2012; Fig. 2). The original version of 
RothC model was developed for simulating the soil organic carbon 
turnover at monthly time step by considering the temperature and 
moisture effects, soil type and plant cover. In the RothC model the 
organic carbon (Mg C ha− 1) is decomposed in four active pools (DPM =
Decomposable Plant Material; RPM = Resistant Plant Material; BIO =
Microbial Biomass; HUM =Humified Organic Matter) and one inert pool 
(IOM = Inert Organic Matter) following first-order kinetic processes 
(Coleman and Jenkinson, 1996). To harmonize the time resolution of 
GRASSVISTOCK (daily) and RothC (monthly), the timescale of the 
original version of RothC was converted from monthly to daily time step 
by re-scaling the original decomposition rate values of each pool. 
Accordingly, GRASSVISTOCK interfaces with RothC providing on a 
daily basis daily average air temperature (◦C), precipitation (mm) and 
evapotranspiration (mm) to simulate the temperature and moisture 
impacts on soil carbon decomposition and the daily fraction of litter C 
(Mg C ha− 1), which was estimated by GRASSVISTOCK as dependent on 
senescence of AGB and BGB. The DPM/RPM ratio of the incoming ma
terial was set to 1.44 (CH-Cha and AT-Neu) and to 0.67 (IT-Tor) as 
required for improved and unimproved grasslands (Coleman and Jen
kinson, 1996). The main outputs of the Roth C model were soil carbon 
fluxes (Mg C ha− 1 d− 1).

The modeled soil respiration was used, together with modeled plant 
respiration, for estimating RECO (Eq. 18; Mg C ha− 1 d− 1), which then 
was compared to the RECO partitioned from measured NEE (Mg C ha− 1 

d− 1; Eq. 19). 

RECO = Rh + Ra (18) 

NEE = RECO − GPP (19) 

Where positive NEE values refer to net CO2 emissions while negative 
NEE values results in net CO2 uptake of the system.

2.4. Model calibration and evaluation

The GRASSVISTOCK model calibration was performed by using the 
CroptimizR package within the R software environment (version 4.2.2., 
R Core Team, 2021; Buis et al., 2020).

The calibration procedure was carried out considering the “cri
t_log_cwss” criteria based on the log transformation of the concentrated 
version of weighted sum of squares, described in Wallach et al. (2011). 
The calibration follows the scheme described in Fig. S1. To assess the 
importance of individual variables in model optimization, some model 
calibrations (here called tests for distinguishing them from site specific 
calibrations) were initially performed at IT-Tor site, where most of the 
observed variables (NEE, AGB, LAI and SOC data) were available. At this 
site, the tests were performed using the combination of different 
observed variables: 1st test was performed using all available obesrved 
variables, i.e. NEE, LAI, AGB and initial soil C pool; 2nd test was per
formed using NEE, LAI and AGB observed variables and 3rd test was 
performed using LAI and AGB variables. While the t-test statistic evi
denced in any case significant differences among simulated and 
observed values, no significant differences were observed when 
comparing the tests among them (Fig. S1), implying that optimization 
can still occur with the minimum observed dataset, i.e. LAI and AGB. 
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Subsequently, GRASSVISTOCK model was calibrated by considering the 
data availability (NEE, LAI and/or AGB) for each site (e.g. the model 
calibration was exclusively performed on LAI and/or AGB where NEE 
observations were not available such as in Mediterranean sites).

The model parameters selected for model calibration and the range 
of parameters values is described in Table S1. During the model cali
bration, the value of most of the parameters was defined by literature 
and kept constant among sites. For example, BIOpart was set to 50 % 
considering the fact that assimilated carbon is equally distributed be
tween AGB and BGB (Xu et al., 2013). BGB senescence rate was set to 30 
% according to (Wang et al., 2019b; Garcia-Pausas et al., 2011). On the 
other hand, only few parameters were calibrated as they were related to 
site-specific conditions (Table 2).

A model spin-up was performed in order to identify the initial con
tent of the soil pools (i.e. DPM, RPM, BIO, HUM and IOM). Initially, the 
fraction of total SOC in each pool (%) was defined according to the 
values established in the literature (Xu et al., 2011; Zimmermann et al., 
2007). The model was then run for 500 years on each site trying to 
maintain the equilibrium conditions of each pool. In the event that the 
model did not reach equilibrium, the contents of the soil C pool were 
redefined by varying the partitioning percentage in each pool by 20 % 
from the values found in the literature.

Finally, the model evaluation was performed on the GPP, RECO and 
ET estimates retrieved from the FLUXNET dataset (https://fluxnet.org/; 
Data accessed: 01/12/2023).

2.5. Model application in a future climate scenario

To simulate future meteorological data, a delta change approach 
(Arnell, 1996) was applied to modify original observed meteorological 
data of the study sites, where a constant daily increase of 2 ◦C of tem
perature and a decrease of 10 % for each precipitation event was applied 
to the relevant datasets. These variations were considered because 
consistent with the RCP8.5 climate scenario of IPCC (IPCC, 2014; Moss 
et al., 2010), reflecting the mean annual temperature and precipitation 
anomalies expected around 2050 for the Mediterranean basin (Cherif 
et al., 2020) and leading the Mediterranean area to become an “Hot
Spot” (Noce et al., 2016). The reference atmospheric CO2 concentration 
was set at 394 ppm during the present period (Kellner et al., 2017), and 
in agreement with the trend in atmospheric CO2 concentrations (ppm) 
from 2002 to 2018 (389.35±10.84 ppm; https://www.eea.europa.eu/). 
For reproducing the future scenario, the atmospheric CO2 concentration 
was set to 540.5 ppm according to the RCP8.5 scenario in 2050 (IPCC, 
2013).

Fig. 2. Model workflow: description of the modeled physiological processes for representing daily grass growth dynamics (LAI, AGB and BGB), soil water balance 
and organic carbon turnover using the Roth C module. The GRASSVISTOCK provides an alternative strategy to the diagnostic approach of the original model version 
of Bellini et al. (2023b; RS-derived LAI), by implementing the prognostic model approach for simulating LAI dynamics (NO RS). The new model also includes the 
impact of agro-management practices (e.g. irrigation, mowing and grazing) on LAI and biomass accumulation. The external factors affecting soil carbon decom
position are: abiotic stress (temperature and soil water content and vegetation cover). LAI = Leaf Area Index; AGB = Above Ground Biomass; BGB = Below Ground 
Biomass; GPP = Gross Primary Production; RS = Remote Sensing; DPM = Decomposable Plant Material; RPM = Resistant Plant Material; BIO = Microbial Biomass; 
HUM = Humified Organic Matter; IOM = Inert Organic Matter.
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The GRASSVISTOCK model was thus run with the present and the 
new climate dataset (+2 ◦C temperature, -10 % precipitation, 540.5 
ppm), and the NEE, GPP, RECO and ET trends were analyzed across all 
Alpine and Mediterranean sites.

2.6. Statistical analysis

The statistical analysis between observed and simulated results was 
performed considering Pearson’s correlation coefficient (r, Eq. 20), the 
root mean squared error (RMSE, Eq. 21), the mean absolute error (MAE, 
Eq. 22), the normalized root mean squared error (NRMSE, Eq. 23), 
normalized on the difference on the range of observed values, the Nash- 
Sutcliffe modelling efficiency (EF, Eq. 24), the coefficient of residual 
mass (CRM, Eq. 25) and the percent bias (pBIAS, Eq. 26). 

r =
∑n

i=1(Oi − O)⋅(Pi − P)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Oi − O)
2⋅
∑n

i=1(Pi − P)2
√ (20) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(Pi − Oi)
2

n

√

(21) 

MAE =
1
n

∑n

i=1
|Oi − Pi| (22) 

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Pi − Oi)

2

n

√

Omax − Omin
⋅100 (23) 

EF = 1 −

∑n
i=1(Oi − Pi)

2

∑n
i=1(Oi − O)

2 (24) 

CRM =

∑n
i=1Oi −

∑n
i=1Pi

∑n
i=1Oi

(25) 

pBIAS = 100
∑n

i=1(Pi − Oi)
∑n

i=1Oi
(26) 

Where Oi is the observed value, O is the average of the observed 
values, Pi is the predicted value, P is the average of the predicted values, 
and n is the number of observations. Regarding pBIAS equation, positive 
values indicate overestimation bias, while negative values indicates 
underestimation bias. The two-side t-test approach was performed by 
using the t.test function in the “stat” package of R software (R Core Team, 
2021) and it was used for comparing observed and simulated results 
from different calibration procedures in IT-Tor (see following Results 
section).

3. Results

3.1. Model calibration and evaluation

The list of GRASSVISTOCK model parameters for all sites is reported 
in Table 2, while the parameters’ description, information on calibrated 
parameters and the range of variation are reported in Table S1.

Only the coefficients regulating LAI development and limiting 
growth were locally calibrated to differentiate the grass growth dy
namics between different environments and plant communities (Table 
S1). Mid-elevation Alpine sites CH-Cha (393 m a.s.l.) and AT-Neu (970 
m a.s.l) exhibited a relatively similar set of parameters for GTmin and 
GTopt (CH-Cha: GTmin = -7 ◦C; GTopt = 1 ◦C; AT-Neu; GTmin = -8 ◦C; 
GTopt = 0.5 ◦C), while the leaf duration LeafLife was higher in AT-Neu 
(450 ◦C days) compared to CH-Cha (230 ◦C days).

The calibration for the five farms of S.Ilario, located in Emilia- 
Romagna region (Italy), resulted in a higher degree days accumulation 
and higher optimal temperature requirements for grass growth with 

respect to northern sites (S.Ilario: LeafLife = 500 ◦C days; GTmin = -6.47 
◦C; GTopt = 3.5 ◦C).

Southern sites in Borgo and Marradi showed similar grass growth 
trends, with higher temperature requirements for minimum growth 
found in Marradi compared to Borgo (Borgo: LeafLife = 312 ◦C days; 
GTmin = -3 ◦C; GTopt = 12 ◦C; Marradi: LeafLife = 200 ◦C days; GTmin = 5 
◦C; GTopt = 11.8 ◦C; Tables 1 and 2; Fig. S2).

As an exception to this trend, the high elevation Alpine site IT-Tor 
(2160 m asl) evidenced intermediate traits between mid-elevation 
Alpine and high elevation Alpine sites with LeafLife=164 ◦C days, 
GTopt = 12 ◦C and GTmin = -6.13 ◦C.

As a first step for evaluating the LAI strategy performances, the 
prognostic LAI approach implemented in the new GRASSVISTOCK 
model was compared with the original diagnostic LAI strategy of 
VISTOCK model version for the simulation of LAI and AGB variables in 
IT-Tor site (Fig. S4). The remote sensing based approach (diagnostic 
strategy) showed better performances with respect to the prognostic 
approach when both LAI and AGB simulations were compared with 
observations (LAI: r = 0.76, RMSE = 0.41 m2 m− 2; AGB: r = 0.83, RMSE 
= 42.55 g d.m. m− 2). Moreover, the overall performances in LAI and 
AGB simulations (Tables 3 and S2, Figs. 3 and S3) showed that high 
Pearson’s correlation coefficients were obtained in all sites, with better 
results obtained, on average, in Borgo for LAI (0.91) and AGB (0.84) 
compared to AT-Neu (0.63) and IT-Tor (0.68) for LAI and AGB, 
respectively. This statistic was associated with a RMSE ranging from 
0.79 m2 m− 2 (min in Borgo A) to 1.42 m2 m− 2 (max in Borgo B) for LAI 
and from 56.25 g d.m. m− 2 (min in Borgo A) to 78.43 g d.m. m− 2 (max in 
Borgo B) for AGB. On the other hand, the lowest RMSE performances 
were found in AT-Neu (2.68 m2 m− 2) and S.Ilario (175.88 g m− 2) for LAI 
and AGB, respectively. According to the statistics presented in Table S2, 
better average model performances were obtained for AGB compared to 
LAI. In particular, IT-Tor showed the best performances considering 
both NRMSE (LAI = 31.60 %, AGB = 25.71 %) and pBIAS (LAI = -9.61 

Table 3 
Performance statistics of NEE (Mg C ha− 1), GPP (Mg C ha− 1), RECO (Mg C ha− 1), 
ET (mm), LAI (m2 m− 2) and AGB (Mg d.m. ha− 1) across all study sites. Regarding 
fluxes, the statistics in the table refer to the complete datasets.

Site Statistics NEE GPP RECO ET LAI AGB
Mg C 
ha− 1

Mg C 
ha− 1

Mg C 
ha− 1

mm m2 

m− 2
Mg d. 
m. 
ha− 1

CH-Cha

r 0.35 0.71 0.61 0.80 0.73 0.74
RMSE 0.04 0.04 0.04 1.58 1.40 1.29
Slope 0.36 0.70 0.39 1.22 0.51 0.75
Intercept -0.006 0.007 0.02 0.08 0.77 -0.36

AT-Neu

r 0.27 0.71 0.55 0.69 0.63 –
RMSE 0.04 0.05 0.05 1.37 2.98 –
Slope 0.32 0.56 0.40 0.95 1.15 –
Intercept -0.002 0.01 0.02 0.55 0.009 –

IT-Tor

r 0.60 0.85 0.65 0.59 0.76 0.68
RMSE 0.02 0.02 0.02 1.37 0.82 0.73
Slope 0.56 0.82 0.80 0.56 0.96 0.85
Intercept 0.0006 0.001 0.003 0.58 0.68 0.62

S. Ilario

r – – – – – 0.72
RMSE – – – – – 1.76
Slope – – – – – 0.55
Intercept – – – – – 0.50

Borgo A

r – – – – 0.95 0.80
RMSE – – – – 0.79 0.56
Slope – – – – 1.35 1.45
Intercept – – – – 0.36 0.08

Borgo B

r – – – – 0.88 0.85
RMSE – – – – 1.42 0.78
Slope – – – – 1.16 1.60
Intercept – – – – 0.91 -0.21

Marradi

r – – – – 0.83 0.79
RMSE – – – – 0.50 0.51
Slope – – – – 1.31 0.66
Intercept – – – – -0.58 -0.06
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Table 4 
Average seasonal peak of AGB (Mg d.m. ha− 1), Average total AGB (Mg d.m. ha− 1) and annual average values of NEE (Mg C ha− 1), GPP (Mg C ha− 1), RECO (Mg C ha− 1) and ET (mm) under present period (0 ◦C temperature, 
0 % precipitation, 394 ppm atmospheric CO2 concentration) and modified climates (+2 ◦C temperature, -10 % precipitation, 394 ppm atmospheric CO2 concentration; +2 ◦C temperature, -10 % precipitation, 540.5 ppm 
atmospheric CO2 concentration). In brackets, the delta changes of the variables compared to the present period (0 ◦C temperature, 0 % precipitation, 394 ppm atmospheric CO2 concentration.

Scenario Site Peak AGB (Mg d.m. ha− 1) Tot AGB (Mg d.m. ha− 1) NEE (Mg C ha− 1) GPP (Mg C ha− 1) RECO (Mg C ha− 1) ET (mm)

0 ◦C 0 % 394 ppm

CH-Cha 4.29 13.51 -3.64 21.28 17.64 881.33
AT-Neu 6.05 12.57 0.64 16.98 17.62 633.79
IT-Tor 3.43 5.54 -0.002 7.46 7.45 503.75
S.Ilario (A) 3.88 9.79 -5.15 14.90 9.75 1007.83
S.Ilario (B) 5.23 9.04 -4.37 13.95 9.57 919.40
S.Ilario (C) 4.64 11.84 -6.53 17.48 10.94 1303.72
S.Ilario (P) 4.28 10.57 -5.42 15.86 10.44 1218.26
S.Ilario (S) 4.71 12.69 -7.27 18.54 11.27 1315.69
Borgo A 1.71 4.07 1.91 5.79 7.69 576.44
Borgo B 2.92 4.81 1.89 6.84 8.73 571.79
Marradi 1.59 2.72 3.11 4.39 7.50 632.54

+2 ◦C -10 % 394 ppm

CH-Cha 4.58 (+0.29) 13.02 (-0.49) -3.02 (+0.62) 20.58 (-0.70) 17.56 (-0.08) 884.33 (+3.00)
AT-Neu 6.27 (+0.22) 11.39 (-1.18) 2.14 (+1.50) 15.44 (-1.54) 17.58 (-0.04) 610.87 (-22.92)
IT-Tor 3.89 (+0.46) 6.44 (+0.90) 0.30 (+0.30) 8.65 (+1.19) 8.96 (+1.51) 545.05 (+41.30)
S.Ilario (A) 3.98 (+0.10) 9.49 (-0.30) -4.68 (+0.47) 14.52 (-0.38) 9.84 (+0.09) 1035.37 (+27.54)
S.Ilario (B) 5.32 (+0.09) 8.85 (-0.19) -3.95 (+0.42) 13.69 (-0.26) 9.74 (+0.17) 935.63 (+16.23)
S.Ilario (C) 5.15 (+0.51) 11.85 (+0.01) -6.22 (+0.31) 17.50 (+0.02) 11.28 (+0.34) 1353.18 (+49.46)
S.Ilario (P) 4.11 (-0.17) 10.28 (-0.29) -4.81 (+0.61) 15.50 (-0.36) 10.69 (+0.25) 1234.30 (+16.04)
S.Ilario (S) 5.22 (+0.51) 12.61 (-0.08) -6.86 (+0.41) 18.46 (-0.08) 11.59 (+0.32) 1369.66 (+53.97)
Borgo A 2.09 (+0.38) 3.94 (-0.13) 2.75 (+0.84) 5.67 (-0.12) 8.42 (+0.73) 562.14 (-14.30)
Borgo B 2.97 (+0.05) 3.95 (-0.86) 3.14 (+1.25) 5.74 (-1.10) 8.89 (+0.16) 554.42 (-17.37)
Marradi 2.04 (+0.45) 3.11 (+0.39) 3.97 (+0.86) 4.92 (+0.53) 8.89 (+1.39) 610.32 (-22.22)

+2 ◦C -10 % 540.5 ppm

CH-Cha 4.85 (+0.56) 14.16 (+0.65) -3.47 (+0.17) 22.29 (+1.01) 18.82 (+1.18) 880.04 (-1.29)
AT-Neu 6.63 (+0.58) 12.26 (-0.31) 2.43 (+1.79) 16.58 (-0.40) 19.00 (+1.38) 610.31 (-23.48)
IT-Tor 4.31 (+0.88) 7.26 (+1.72) 0.05 (+0.05) 9.71 (+2.25) 9.76 (+2.31) 542.09 (+38.34)
S.Ilario (A) 4.39 (+0.51) 10.49 (+0.70) -5.45 (-0.30) 15.82 (+0.92) 10.38 (+0.63) 1026.00 (+18.17)
S.Ilario (B) 5.60 (+0.37) 9.54 (+0.50) -4.48 (-0.11) 14.62 (+0.67) 10.14 (+0.57) 925.37 (+5.97)
S.Ilario (C) 5.54 (+0.90) 12.98 (+1.14) -7.12 (-0.59) 18.98 (+1.50) 11.87 (+0.93) 1346.31 (+42.59)
S.Ilario (P) 4.72 (+0.44) 11.32 (+0.75) -5.69 (-0.27) 16.86 (+1.00) 11.17 (+0.73) 1229.67 (+11.41)
S.Ilario (S) 5.50 (+0.79) 13.80 (+1.11) -7.75 (-0.48) 20.01 (+1.47) 12.26 (+0.99) 1367.56 (+51.87)
Borgo A 2.36 (+0.65) 4.50 (+0.43) 2.58 (+0.67) 6.41 (+0.62) 8.98 (+1.29) 561.34 (-15.10)
Borgo B 3.41 (+0.49) 4.60 (-0.21) 2.77 (+0.88) 6.59 (-0.25) 9.36 (+0.63) 555.15 (-16.64)
Marradi 1.75 (+0.16) 2.83 (+0.11) 4.21 (+1.10) 4.59 (+0.20) 8.79 (+1.29) 607.62 (-24.92)

AGB = Above-ground biomass; NEE = Net Ecosystem Exchange; GPP= Gross Primary Production; RECO = Ecosystem respiration; ET = Evapotranspiration
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%, AGB = -16.92 %) statistics among the Alpine sites. For the Medi
terranean sites, best performances for LAI and AGB simulations were 
found at Marradi site (MAE = 45 g d.m. m− 2 and 32 g d.m. m− 2; NRMSE 
= 35.94 % and 26.95 %, pBIAS = -22.71 % and -41.08 % for LAI and 
AGB, respectively).

Furthermore, the model satisfactorily simulated the water dynamics 
along the proposed climatic transect, from the Alps (IT-Tor, AT-Neu) to 
the inner region (Borgo; Fig. 4 and S5). At the Alpine sites, the simulated 
FTSW average trend for IT-Tor (2012–2018) and AT-Neu (2002–2006) 
reproduced the observations (r = 0.91; RMSE = 0.15, MAE = 0.13, 
NRMSE = 25.97 %, EF = 0.13 and CRM = 0.10, averaged over all data). 
Satisfactory performances of the FTSW were also obtained in Borgo (r =
0.95; RMSE = 0.13, MAE = 0.08, NRMSE = 13.25 %, EF = 0.91 and CRM 
= -0.02), although the dataset was limited to a single season data. On the 
other hand, the model showed poorer results in the simulation of 
evapotranspiration (ET mm; Table 3 and S2), on average for all sites in 
Alpine chain where observed data were available.

The carbon litter simulations ranged from 2.48 Mg C ha− 1 y− 1 (Borgo 
A) to 14.13 Mg C ha− 1 y− 1 (AT-Neu). This daily fraction, identified in 
spin up process, was used as input to the RothC model. In detail, the 
model spin-up showed a higher percentage distributed in the humified 
pool and a lower percentage in the inert pool in sites located in Alpine 
chain compared to the Mediterranean ones (Table S4).

The simulations of water and carbon fluxes were in good agreement 
with the observations, as shown in Table S3 and in Figs. 5 and S7–8. Sites 
where eddy covariance data were available showed a different observed 
net carbon uptake, with CH-Cha and IT-Tor evidencing negative annual 
NEE values (-2.88 ± 1.99 and -0.37 ± 0.63 Mg C ha− 1 on average, 
respectively), while AT-Neu showed a net carbon emission (NEE =
+3.74 ± 1.73 Mg C ha− 1 on average). For these sites, GRASSVISTOCK 
model simulated annual NEE values of -2.99 ± 1.91 Mg C ha− 1, +0.64 ±
1.93 Mg C ha− 1 and -0.002 ± 0.82 Mg C ha− 1 on average for CH-Cha, 
AT-Neu and IT-Tor sites, respectively. Similar to NEE, the GRASSVI
STOCK model was able to reproduce GPP, RECO and ET at CH-Cha, AT- 
Neu and IT-Tor (Table S3). The statistics of the correlation between 
observed and simulated annual NEE, GPP, RECO and ET values are 
shown in Fig. 5 for all sites, while the performances between observed 
and simulated data of daily and 10-days trends are shown in Figs. S7–8. 
The model showed a better performance for daily simulated NEE in IT- 
Tor (r = 0.61; RMSE = 0.02 Mg C ha− 1) compared to the other two sites 
(CH-Cha: r = 0.35; RMSE = 0.04 Mg C ha− 1; AT-Neu: r = 0.27; RMSE =
0.04 Mg C ha− 1). This trend is also confirmed for GPP and RECO, with 
IT-Tor showing the highest performances (GPP: r = 0.85; RMSE = 0.02 
Mg C ha− 1; RECO: r = 0.65; RMSE = 0.02 Mg C ha− 1). On the other 
hand, ET showed the highest r value in CH-Cha (0.80) and the lowest 
RMSE value in IT-Tor (1.37 mm). The other statistics related to the 
fluxes are reported in Table S2.

3.2. Model application

The calibrated model was applied on modified climate datasets, 
representing the increase in temperature, the decrease in precipitation 
and a CO2 enriched environment expected in the future, to outline 
possible consequences of climate change on the grassland ecosystem 
performance under warmer and drier conditions (Fig. 6).

In the present period, the sites experiencing mild temperature and 
favourable precipitation regime (CH-Cha) or supported by irrigation (S. 
Ilario), exhibited negative NEE values (-3.64 ± 1 and -5.75 ± 1.15 Mg C 
ha− 1, respectively), with the only exception of AT-Neu, characterised by 
positive NEE value (+0.64 ± 1.93 Mg C ha− 1). The NEE results for CH- 
Cha and S. Ilario were derived from higher GPP compared to RECO 
values while higher RECO compared to GPP was found in AT-Neu 
(Table 4). Conversely, in sites characterised by shorter (IT-Tor) or 
drier (Borgo A and B and Marradi) growing seasons, the balance be
tween GPP and RECO resulted in neutral (-0.002 ± 0.82 Mg C ha− 1, IT- 
Tor) or positive NEE (2.30±1.04 Mg C ha− 1 on average for Borgo A, B 

and Marradi; Table 4).
The combination of increasing temperature, decreasing precipitation 

and higher CO2 concentration resulted, in an increase of the peak AGB 
(+0.58 Mg d.m. ha− 1) and total AGB (+0.60 Mg d.m. ha− 1), averaged 
over all study cases and compared to the present period indicating the 
positive effect of a CO2 enriched environment (average of all sites). On 
the other hand, the scenario with increasing temperature, decreasing 
precipitation and reference CO2 showed a general increase in the AGB 
peak and a decrease in the total AGB (peak AGB: +0.26 and total AGB: 
-0.20 Mg d.m. ha− 1, averaged of all sites), although this positive effect is 
less evident when compared to the previous scenario. Concerning the 
carbon fluxes, the scenario with elevated atmospheric CO2 concentra
tion showed a general increase in GPP with respect to the present period 
(+0.82 Mg C ha− 1, averaged over all study cases). However, the higher 
impact of climate change on RECO (+1.08 Mg C ha− 1, averaged over all 
study cases) resulted in higher net CO2 emissions than in the present 
period (NEE: +0.27 Mg C ha− 1, averaged over all study cases). The S. 
Ilario site, where irrigation was applied in all farms, represented an 
exception where the average NEE decreased by -0.35 Mg C ha− 1 (net 
carbon uptake increased), comparing the present period with the at
mospheric CO2 enriched scenario.

In the enriched CO2 scenario, the increase in CO2 concentration from 
394 to 540.5 ppm smoothed the impact of a warmer climate on ET by 
reducing its increase from +11.89 mm to +7.90 mm (average among all 
study cases).

Carbon fluxes showed two opposite trends at seasonal scale: in 
springtime, carbon uptake generally increased in all sites while this 
trend was reversed in summer. In the first part of the season, when soil 
water conditions were not yet limiting (Fig. S9), the earlier and higher 
photosynthetic activity led to higher GPP compared to the present 
period (+0.90 Mg C ha− 1 during January-April period). This positive 
effect on GPP was not fully counterbalanced by a proportional increase 
in RECO (+0.47 Mg C ha− 1), which ultimately led to an increase in 
carbon uptake in this part of the season (NEE: -0.43 Mg C ha− 1 during 
January-April period) with respect to the present period and across all 
sites and study cases. This trend was reversed in May-September, where 
drier and warmer conditions reduced GPP (-0.10 Mg C ha− 1) and 
increased RECO (+0.40 Mg C ha− 1), hence determining a shift towards 
an increase in NEE (+0.50 Mg C ha− 1) in the CO2 enriched scenario with 
respect to the present period (Fig. S9). The NEE increase was reduced in 
S. Ilario because of the applied irrigation (+0.13 Mg C ha− 1). There were 
negligible variations of carbon and water fluxes in winter time, espe
cially in sites characterised by permanent snow cover (e.g. November - 
April IT-Tor, NEE: from -0.002 Mg C ha− 1 (min) to 0.04 Mg C ha− 1 (max) 
over the present period). Increased CO2 concentration mitigated the 
negative effects of climate change. Over the growing season, when the 
effect of CO2 on εmaxCO2 and TECCO2 was removed in the simulation, NEE 
increased by +0.43 Mg C ha− 1 in all sites as compared to the simulation 
including CO2 concentration. On a seasonal scale, the positive trend in 
carbon uptake observed in January-April (NEE: -0.43 Mg C ha− 1) was 
slightly downsized when the effect of CO2 was removed (NEE: -0.26 Mg 
C ha− 1) with respect to the present and in the same period. In summer, 
by removing the CO2 effect, NEE increased by +0.28 Mg C ha− 1 with 
respect to the simulation under higher CO2 concentration.

4. Discussion

4.1. Model implementation, calibration and evaluation

The results of this study showed that the GRASSVISTOCK model was 
able to reproduce the grassland growth dynamics and the ecosystem 
fluxes in sites characterised by contrasting climates and management 
practices (Figs. 3-5). The presented model is based on the architecture 
presented in Bellini et al. (2013b), but broadens its applicability and 
achievable outputs. In contrast to the approach of Bellini et al. (2023b), 
where the grass development and growth dynamics were simulated 
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based on a diagnostic NDVI-derived LAI approach, in this new version a 
prognostic strategy for simulating LAI dynamics was proposed to in
crease the model applicability. Considering the reliability of the diag
nostic approach in estimating LAI as a driver of biomass accumulation in 
grasslands (Bellini et al., 2023b; He and Mostovoy, 2019), the LAI and 
AGB outputs of the current configuration (modelled LAI) were first 
compared with the results derived by the model forced with 
NDVI-derived LAI strategy. The NDVI-derived LAI approach (Bellini 

et al., 2023b), in which LAI is estimated from satellite observations of 
grasslands, resulted in higher performance of LAI and AGB simulations 
compared to the alternative LAI prognostic model (Fig. S4). Neverthe
less, although the prognostic approach may appear to be less accurate, it 
is driven exclusively by the simulation of physiological processes based 
on meteorological inputs. This second alternative enables the prediction 
of the dynamic of both variables without the need for external data to 
force simulation, thus allowing to account for daily grass growth and 

Fig. 3. Comparison and performance statistics between observed and simulated LAI and AGB data in IT-Tor (unmanaged Alpine grassland, 2012–2018) and in Borgo 
(managed Mediterranean pasture 2020–2021; Borgo A and B refer to two different managements as reported in Table 1). p-value: (ns, not significant; •, p<0.05; **, p 
<0.01; ***, p<0.001).
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ecosystem fluxes under present and future climates. The prognostic 
approach demonstrated acceptable performance in simulating grass 
growth dynamics across the proposed climatic transects, taking into 
account potential perturbing factors such as mowing, grazing and irri
gation. The model’s simple architecture, comprising a reduced number 
of modelled processes and parameters to be calibrated, entailed the in
clusion of plant parameters pertaining to the leaf area development and 
those limiting photosynthetic efficiency in the calibration process. The 
remaining parameters were defined by literature and assumed as con
stant during the simulations (Table 2). The calculation of GPP, which is 
dependent on light interception and maximum potential radiation use 
efficiency (εmaxref) as reduced by thermal and water stresses, represents 
the core of the simulation model. While εmaxref was assumed as constant 
for all sites (1.65 g C MJ− 1; Heinsch et al., 2003; Maselli et al., 2013), a 
reliable simulation of the gross assimilation rate required a local 
parametrization of coefficients regulating LAI development (e.g. leaf 
lifespan, LeafLife), as well as the effect of thermal stress on photosyn
thesis (GTmin and GTopt) during the season. LeafLife varied across the sites 
ranging from 163.92 ◦C days (IT-Tor) to 500 ◦C days (S.Ilario). This 
likely reflects the influence of diverse factors, including the phenology of 
different vegetation composition, environmental conditions and 
agro-management practices at each site (Reich et al., 1998; Karatassiou 
and Noitsakis, 2010; Schleip et al., 2013). As an example, Reich et al. 
(1998) showed that distinct leaf lifespan and specific leaf area can be 
observed for different grass species belonging to the same functional 
group across different ecosystem types (i.e. from alpine tun
dra/subalpine to tropical rainforest).

The local calibration of GTmin and GTopt showed that the relevant 
values were positively correlated to mean annual air temperature across 
the considered regions (Fig. S2). This relationship was in accordance 
with the results found by Bellini et al. (2023b) and Maselli et al. (2013)
in a modelling approach, which showed that warmer climates exhibit 
higher temperature thresholds defining photosynthetic limits (Berry and 
Bjorkman, 1980; Chang et al., 2021b; Hikosaka et al., 2006). The only 
exception to this trend was observed at IT-Tor, which, despite being the 
coldest site, exhibited a relatively high GTopt (Fig. S2). This particular 
behavior may be related to the specific climatic conditions of IT-Tor 
(Table 1), which are characterised by a prolonged winter period of 
snow cover (~ 6 months, on average over the study period). This leads to 
a shorter vegetative growing season and a relatively higher minimum 
temperature for optimal grass growth (GTopt) compared to AT-Neu and 
CH-Cha (AT-Neu snow cover: ~2.5 months, no continuous CH-Cha snow 
cover: ~1 month on average over the study period). It is noteworthy that 
the use of these empirical relationships (Fig. S2), simplifies the param
eterisation of Tcor in areas where it has not yet been tested, employing 
the average temperature of the location as driving parameter.

The GRASSVISTOCK model provided an acceptable estimation of 
AGB (Fig. 3), which was calculated as the difference between the GPP 
and plant respiration. This accounts for the autotrophic component of 
ecosystem respiration (Marconi et al., 2017; Wang et al., 2019a). Despite 
its intrinsic limitations (Thornley and Cannell, 2000: Collalti et al., 
2020), this paradigm is still adopted for modelling plant respiration, 
with satisfactory results for grassland (Amato and Gimenez, 2022). It 
was considered particularly suitable for the proposed parsimonious 
modelling scheme. This approach revealed that temperature exerts a 
direct influence on respiration activity, as it has been corroborated by 
other studies (Amthor, 1984; Szaniawski and Kielkiewicz, 1982). 
Indeed, the results of the calibration of the maintenance respiration 
coefficient (km) demonstrated an increase in this parameter accordance 
with rising temperatures (Fig. S10). With this regard, although the re
sults indicated that km is species- and site-specific, the relationship 
shown in Fig. S10 may facilitate the model applicability in new areas.

The parametrization of an individual species or variety is a feature of 
crop models that undoubtedly shows positive aspects in terms of the 
simplification of simulated processes, without taking into account the 
growth dynamics of a multi-species system. This extreme simplification 

restricts the model applicability to numerous aspects, including the 
enhancement of the agronomic management and the evaluation of the 
impact of climate change on plant growth (Movedi et al., 2019). How
ever, very complex modelling approaches may increase simulation un
certainty if not properly calibrated and validated (Soussana et al., 2012; 
Movedi et al., 2024). In light of the difficulty of obtaining observed data 
of a wide floristic composition, the simplified approach proposed in this 
study can be considered an acceptable compromise in terms of the 
performance obtained for flux simulation (Section 3.2). In addition, the 
overall consistency of the model in estimating growth processes and the 
associated transpiration is demonstrated by its ability to reproduce soil 
water balance, as evidenced by the results for IT-Tor, AT-Neu and Borgo 
sites (Fig. 4). Considering that water stress plays a major main role on 
grassland growth and forage quality (Habermann et al., 2019; Masta
lerczuk and Borawska-Jarmułowicz, 2021), a satisfactory estimation of 
the soil water content availability is important for modelling grassland 
growth (Bellini et al., 2023b; Sándor et al., 2017). Once more, these 
findings were obtained by considering the parameters driving potential 
transpiration (TECref) and the effect of water stress on it as constants, 
thereby representing an average grassland comprising diverse species. 
This assumption aligns with the original VISTOCK model (Bellini et al., 
2023b) by allowing model application in different climatic and envi
ronmental contexts. For example, moving from the wet conditions of 
IT-Tor and AT-Neu sites, which are favoured by high precipitation and 
lower temperatures, to the severe water stress typical of a Mediterranean 
summer (e.g. Borgo; Fig. 4).

In all study cases, the water stress was slightly underestimated dur
ing the summer periods (Fig. 4). This trend may be attributed to several 
factors. Firstly, SWC was expressed as FTSW, which is used as scalar to 
reduce photosynthesis and transpiration. Its limits, 0 (wilting point) and 
1 (field capacity), were determined by the series of observed data, with 
0 corresponding to the lowest SWC found and 1 to the highest one. It is 
evident that this approximation can generate a level of uncertainty 
regarding the water that can potentially be contained in the soil layer. 
This may result in an overestimation of the water stress in case the lower 
limit of FTSW is fixed for a relatively too high SWC. Nevertheless, a 
certain degree of overlap is observed between the variability parameter 
of the curves, indicating that the simulated and observed FTSW exhibit a 
similar seasonal pattern. This is corroborated by the highly significant 
value of the Pearson’s correlation coefficient found for Borgo (0.95) and 
IT-Tor (0.88), p<0.001. Moreover, the approach used was based on the 
identification of two single soil layers, wherein precipitation and irri
gation represented the inputs, while evapotranspiration represented the 
main output of the water balance (Bellini et al., 2023b). Thus, the model 
does not take into account phenomena such as capillary rise and runoff 
that may affect the water balance during the growing season (Soltani 
and Sinclair, 2012). Notwithstanding the level of uncertainty, the model 
still showed an overall consistency in the estimation of the effect of 
water stress on the accumulation of above-ground biomass and fluxes, 
making the bias found acceptable. The GRASSVISTOCK model was able 
to capture the seasonal grass growth trend of the different sites, as 
generally characterised by a rapid increase in biomass early in the sea
son followed by a phase of progressive senescence. This result is further 
supported by simulations in sites where management practices were 
applied throughout the season (e.g. AT-Neu, Borgo and Marradi) and the 
model identified grass recovery after mowing or grazing. However, the 
performance between the observed and simulated AGB values was found 
to be lower than those reported in other studies (Bellini et al., 2023a; 
Petersen et al., 2021; Pulina et al., 2018), where the use of a more 
advanced model (i.e. PaSim) showed better performances in estimating 
AGB (Table S2). As previously described, the advantages generated by 
the use of a simplified modelling approach in terms of executability, 
adaptability, and general applicability may be associated with lower 
estimation accuracy of some processes that a more advanced and com
plex modelling solution is able to account for.

Differently from AGB, BGB observed data were not available for 
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Fig. 4. Comparison between observed (orange) and simulated (blue) FTSW data in IT-Tor, AT-Neu and Borgo B. The average FTSW trends and the standard de
viations are displayed for IT-Tor and AT-Neu during the periods 2012–2018 and 2002–2006, respectively. The FTSW trend from June to December 2021 only is 
reported for Borgo B, due to the lack of further observations. The statistics were calculated on the average trends of FTSW data in IT-Tor and AT-Neu and on the FTSW 
data from 2021 in Borgo. p-value: (ns, not significant; •, p<0.05; **, p <0.01; ***, p<0.001).
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model validation. Consequently, the senescence rate was approximated 
using a fixed root turnover ratio (0.3 year− 1, as reported by Wang et al., 
2019b; Garcia-Pausas et al., 2011). In the absence of data, some con
siderations can be drawn based on the data reported in the literature. In 
general, the standing total BGB (living and dead roots) is higher in sites 
with higher AGB (data not shown). This trend reflects what observed by 
Yang et al. (2018), who found a positive correlation between BGB and 
AGB. The estimated BGB of perennial forages in Europe is reported by 
Bolinder et al. (2012) to be approximately 7.9 Mg ha− 1, on average. 
However, the high degree of variability, from 1.1 to 47.3 Mg ha− 1, 
makes difficult to draw a conclusion on the accuracy of simulation. 
Amato and Gimenez (2022) found a smaller variability range for 
grasslands across different regions, but their analysis further suggests 
that steady BGB biomass is higher in cooler climates. To illustrate, the 
total BGB of Charleville (Australia; Christie, 2014), with an average 

mean annual temperature (MAT) of 21 ◦C, reached from ~1.07 Mg ha− 1 

for C3 to ~4.05 Mg ha− 1 for C4 species, while shifting to a colder climate 
(e.g. Montecillo, Mexico, MAT = 15.6 ◦C; Garcia-Moya, 2015), BGB 
yielded in average ~11.7 Mg ha− 1. Even cooler sites, like Dickinson 
(USA, MAT = 6 ◦C, Whitman and Lauenroth, 2014) and Shortandy 
(Kazakhstan, MAT = 2.3 ◦C, Gilmanov, 2015) yielded a total BGB is up 
to ~30 Mg ha− 1 for grazed grasslands in the first case and up to ~40 Mg 
ha− 1 in the second case that is in the range of what is simulated for 
colder and managed sites of CH-Cha and AT-Neu. The S. Ilario site, 
which is characterised by high AGB production and the application of 
irrigation management, exhibited similar BGB values (data not shown). 
In particular, a reasonable simulation of AGB and BGB accumulation 
suggests that the GRASSVISTOCK model can reproduce the amount of 
total annual plant carbon litter, i.e. the yearly accumulated senesced 
matter from AGB and BGB in CH-Cha and AT-Neu (11.62 ± 3.08 Mg C 

Fig. 5. Correlations between annual observed (obs) and simulated (sim) data of NEE (Mg C ha− 1), GPP (Mg C ha− 1), RECO (Mg C ha− 1) and ET (mm) for CH-Cha, AT- 
Neu and IT-Tor sites located in Alpine chain. The years in which some data were removed (i.e. AT-Neu 2002, CH-Cha 2005 and 2009) were excluded. p-value: (ns, not 
significant; •, p<0.05; **, p <0.01; ***, p<0.001).
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ha− 1 y− 1, on average). This is in line with the value reported by De 
Bruijn et al. (2012) for a similar environment and management system 
(i.e. managed grassland in the Swiss Alps) which accounts for an annual 
contribution of 13.40 Mg C ha− 1 y− 1 (average among intensive and 
extensive management experiments).

In this context, the RothC module was selected for routinely simu
lating the SOC turnover and the soil heterotrophic respiration, in 
accordance to the outputs provided by GRASSVISTOCK. Differently to 
other soil carbon models (e.g. CENTURY), the RothC model exclusively 
estimates the carbon cycle without accounting for other elements (e.g. 
nitrogen, phosphorus and sulfur), which may limit the model capability 
at describing a complete analysis of biogeochemical cycles. However, 
the restricted number of inputs required for RothC simulations, which 
allows for a wider range of spatial-scale applications (Morais et al., 

2019), is consistent with the ratio used in the development of GRASS
VISTOCK. As previously described, GRASSVISTOCK aims to limit model 
input data and maximize its applicability in different environmental and 
climatic contexts, thereby providing a comprehensive overview of the 
ecosystem carbon balance.

4.2. Ecosystem fluxes and model application

The model demonstrated satisfactory performance in simulating 
grassland carbon fluxes in Alpine sites where eddy covariance datasets 
were available (Figs. 5 and S8). In general, GRASSVISTOCK under
estimated GPP and RECO in all study sites, a finding that is consistent 
with similar studies (Sándor et al., 2020; Forster et al., 2022). This 
behaviour may be attributed to the fact that, in the present study, model 

Fig. 6. Seasonal average trend of NEE (Mg C ha− 1), GPP (Mg C ha− 1), RECO (Mg C ha− 1) and ET (mm) of the present (black line - 0 ◦C, 0 %, 394 ppm) and future 
climates (blue line - +2 ◦C, -10 %, 394 ppm; red line - +2 ◦C, -10 %, 540.5 ppm).
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calibration was performed on NEE, which ultimately represents the only 
observed data from eddy covariance. In contrast, GPP and RECO are 
derived using partitioning algorithms (e.g. Nighttime vs Daytime; Pas
torello et al., 2020; Lasslop et al. 2010, Reichstein et al., 2005). This 
implies that an ad-hoc calibration on GPP and/or RECO, in place of the 
observed NEE from eddy covariance, may result in an overestimation of 
the latter (see Section 2.4).

The results obtained in this study align with those of previous 
modelling exercises (Sándor et al., 2020; Forster et al., 2022), in which 
different models were initially calibrated against vegetation, soil and 
carbon fluxes data in grasslands and croplands. In this context, an 
ensemble of grassland models (e.g. APSIM-GRAZPLAN, APSIM-Soil
Water, DairyMod, PaSim, etc.) was used for simulating NEE, GPP and 
RECO in two grasslands of France and the United Kingdom. The results 
of the median of the simulation obtained by Sándor et al. (2020) in 
Laqueielle grassland of France were in agreement in terms of correlation 
coefficient (r) with the results of this study obtained across Alpine sites 
(NEE: 0.55 vs 0.45, GPP: 0.79 vs 0.74; RECO: 0.75 vs 0.61 for Sándor 
et al., 2020 and GRASSVISTOCK, respectively). On the other hand, the 
Nash-Sutcliffe modeling efficiency (EF) of Sándor et al. (2020) ranges 
from -0.65 to 0.62 for GPP, from -4.26 to 0.45 for NEE and from -1.52 to 
0.52 for RECO, when observed and simulated values were compared for 
grassland sites and different calibration stages. These results were lower 
compared to those obtained in our study, where EF ranges from 0.41 to 
0.44 for GPP, from -0.80 to 0.25 for NEE and from 0.10 to 0.21 for RECO. 
In Forster et al. (2022), the RMSE values of NEE, GPP and RECO ob
tained using DNDC model in a Finnish grassland were found in agree
ment with the RMSE calculated in this study across the Alpine sites 
(NEE: 0.027 vs 0.03 Mg C ha− 1, GPP: 0.0351 vs 0.04 Mg C ha− 1, RECO: 
0.0142 vs 0.04 Mg C ha− 1 for DNDC and GRASSVISTOCK models, 
respectively). In the same study, the pBIAS was found -20.7 % for GPP, 
-14.2 % for NEE and -22.8 % for RECO which was in agreement to our 
results of GPP -9.74 % (min: -25.86 %; max: 15.84 %) and RECO -18.45 
% (min: -33.16 %; max: 4.90 %) and higher for NEE -59.51 % (min: 
-99.38 %; max: 3.89 %).

Despite the relevant differences in species composition, climate, and 
agronomic management (Table 1), the results of model calibration for 
NEE showed a satisfactory agreement with observations in CH-Cha AT- 
Neu and IT-Tor, thereby establishing the viability of further application 
of the tool to reproduce grassland dynamics in different environmental 
conditions (Figs. 5 and S7–8). In Mediterranean sites, where flux ob
servations were not available, the GRASSVISTOCK model was firstly 
calibrated against observed LAI and AGB variables, and then used for 
simulating carbon fluxes. Although the model was not calibrated using 
the variable NEE at these sites, we considered that the model calibration 
on LAI and AGB variables and a proper simulation on water dynamics 
may be a satisfactory condition for carbon cycle estimation. This is also 
in line with the tests performed at the IT-Tor site, where no significant 
differences between the calibrations performed with or without the use 
of NEE were found (Fig. S1 and Results section).

The application of the model under higher temperature and lower 
precipitation evidenced an average increase of the AGB peak in all study 
cases analyzed, irrespective of CO2 atmospheric concentration (Fig. 6
and Table 4) and an associated advancement of the start of vegetative 
growth (Fig. S9) as already observed (Bellini et al., 2022) and simulated 
(Petersen et al., 2021) across Europe in response to climate change. In 
contrast, during summer, the combined effect of elevated temperatures 
and stressful soil moisture conditions resulted in a net reduction in total 
AGB, particularly when these conditions were not counterbalanced by 
the positive impact of the enriched atmospheric CO2 concentration on 
plant growth. With regard to fluxes, a decrease in carbon uptake ca
pacity (i.e. NEE increase) is shown in the scenario characterized by the 
reference atmospheric CO2 concentration while it is improved (i.e. NEE 
decrease) under enriched CO2 concentration due to the positive impact 
of CO2 on εmaxCO2 and TECCO2. In accordance with the observed trend 
in AGB, an increase of carbon uptake capacity was shown in the first part 

of the season where the higher temperature and non-stressful soil water 
conditions determined a positive impact on GPP, which is then con
verted in NPP and AGB (Fig. S9). In summer, the combined effect of 
higher temperature and lower soil water content determined an average 
higher increase of RECO compared to GPP which reduce the carbon 
uptake capacity (i.e. NEE increase). The enriched CO2 scenario was 
shown to reduce this gap with a consequent limited downward trend of 
NEE, as similarly reported in other studies on grasslands where the 
elevated atmospheric CO2 concentrations are expected to mitigate the 
impact of high temperature and drought on net ecosystem exchange 
(Franks et al., 2013; Roy et al., 2016).

This results in an increase in the discrepancy between the potential 
carrying capacity that could be achieved during the spring and summer 
periods and the actual carrying capacity that cannot support the same 
number of animals due to a significant decline in AGB production. This 
could influence farm area management strategies by seeking an equi
librium between the area dedicated to grazing and that dedicated to 
fodder stock production, with the objective of supporting the higher 
load that can be assumed from the expected increase in the spring 
period. The results obtained in S.Ilario, where higher CO2 concentration 
and application of summer irrigation determined higher AGB and lower 
NEE values (Table 4), indicated that irrigation practice in future cli
mates may even enhance the capability of grasslands for carbon fluxes 
while increasing the relevant carrying capacity (Ryan et al., 2017; 
Doughty et al., 2018; Brilli et al., 2019, 2023). However, the use of water 
resources should be carefully considered in the view of its limited sup
ply, the high costs and the extra-agriculture uses.

5. Conclusions

The GRASSVISTOCK model was able to simulate the LAI and AGB 
trends under different agro-management conditions (e.g. mowing, 
grazing and irrigation), to reproduce the FTSW dynamics under 
extremely different soil water conditions in summer (e.g. IT-Tor vs 
Borgo) and to satisfactorily simulate the ecosystem fluxes (NEE, GPP, 
RECO and ET), which represents a key point in order to support farmers’ 
decisions during the optimization of farm management. Furthermore, 
the GRASSVISTOCK model application under present and future cli
mates (+2 ◦C, temperature; -10 % precipitation; 394 or 540.5 ppm), 
indicates a general decrease in carbon uptake across all sites. This ex
pected to provide useful information regarding the future sustainability 
and mitigation potential of Alpine and Mediterranean grasslands. 
Despite the positive impact of a CO2 enriched environment, which 
partially counterbalances the negative effect of increasing temperature 
and decreasing precipitation on carbon uptake, the results of this study 
showed that climate change mitigation in grasslands will be strongly 
limited if no ad-hoc adaptation strategies were adopted (e.g. positive 
impact of applied irrigation in S.Ilario).

In light of the aforementioned findings, the simplified methodology 
proposed with GRASSVISTOCK model moves a step forward to describe 
carbon and water flux dynamics in European agro-pastoral-ecosystems, 
with the purpose to investigate the future sustainability of these systems 
under the projected climate scenarios and different managements. 
Future works should concentrate on the implementation of new 
modelling approaches, including the introduction of new modules for 
simulating soil and plant nitrogen dynamics and mixed grass and shrub/ 
tree systems, as well as improvements to the estimation of grazing and 
its contribution to carbon dynamics. These developments will enhance 
the estimation of biogeochemical cycles and the assessment of the 
climate mitigation potential in grasslands.

Software availability

The current model version can be made available to end users upon 
reasonable request to the corresponding author.
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Amato, M.T., Giménez, D., 2022. Quantifying root turnover in grasslands from biomass 
dynamics: application of the growth-maintenance respiration paradigm and re- 
analysis of historical data. Ecol. Model. 467, 109940. https://doi.org/10.1016/j. 
ecolmodel.2022.109940.

Amthor, J.S., 1984. The role of maintenance respiration in plant growth. Plant Cell 
Environ. 7, 561–569. https://doi.org/10.1111/1365-3040.ep11591833.

Andren, O., Katterer, T., 1997. ICBM: the introductory carbon balance model for 
exploration of soil carbon balances. Ecol. Appl. 7, 1226–1236. https://doi.org/ 
10.2307/2641210.

Arnell, N.W., 1996. Global Warming, River Flows and WaterResources. Wiley, 
Chichester, United Kingdom. 

Argenti, G., Chiesi, M., Fibbi, L., Maselli, F., 2022. Use of remote sensing and bio- 
geochemical models to estimate the net carbon fluxes of managed mountain 
grasslands. Ecol. Model. 474, 110152. https://doi.org/10.1016/j. 
ecolmodel.2022.110152.

Bai, Y., Cotrufo, M.F., 2022. Grassland soil carbon sequestration: current understanding, 
challenges, and solutions. Science (1979) 377, 603–608. https://doi.org/10.1126/ 
science.abo2380.

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., 
Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., 
Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K.T., Pilegaard, K., 
Schmid, H.P., Valentini, R., Verma, S., Vesala, T., Wilson, K., Wofsy, S., 2001. 
FLUXNET: A new tool to study the temporal and spatial variability of ecosystem- 
scale carbon dioxide, water vapor, and energy flux densities. B. Am. Meteorol. Soc 
82, 2415–2434. https://doi.org/10.1175/1520-0477(2001)0822.3.

Barneze, A.S., Abdalla, M., Whitaker, J., McNamara, N.P., Ostle, N.J., 2022. Predicted 
soil greenhouse gas emissions from climate × management interactions in temperate 
grassland. Agronomy 12, 3055. https://doi.org/10.3390/agronomy12123055.

Bellini, E., Moriondo, M., Dibari, C., Leolini, L., Staglianò, N., Stendardi, L., Filippa, G., 
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