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Abstract
Purpose of Review  The elemental composition of organisms (the elementome) strongly determines their functional traits 
and their functioning. Global change presents significant potential impacts on forest elementomes of trees, soils, and soil 
microbes, influencing primary production, nutrient cycling, and food-web dynamics in forest ecosystems. This review aims 
to summarize recent advancements in understanding the response of forest elementomes to global change and how we can 
help them adapt to new conditions through improved management practices.
Recent Findings  Atmospheric CO2 enrichment, increased nitrogen (N) deposition, climate warming and droughts strongly 
influence the elemental composition of trees, microbes and soils of forest ecosystems. Accounting for the composition and 
availability of essential elements such as N, phosphorus (P) and potassium (K) in the plant-soil system can largely improve 
projections of forest carbon(C) cycle, especially when simulating the capacity of globally increasing C fixation by the rising 
atmospheric CO2 concentration and N deposition.
Summary  Global change influences forest elementomes across various scales, with diverse spatiotemporal variation and 
underlying mechanisms. Future research should integrate multi-source information to enhance the monitoring of elemen-
tomes and facilitate the adaptation of forests to the new environmental conditions through forest management, particularly 
focusing on the interaction effects of the multiple facets of global change.
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Introduction

Global forests contain 861 ± 66 Pg C (mean ± standard 
deviation) in plant biomass, soil (including soil microbial 
biomass), deadwood and litter, which have a profound effect 
on the global carbon (C) cycle and the mitigation of climate 

change [1]. Forest elementomes, defined as the concentra-
tion of elements within organisms of trees, soils, and soil 
microbes, influence primary production, nutrient cycling, 
and food-web dynamics in forest ecosystems [2–4]. Even 
though some trees exhibit a very strong stoichiometric 
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homeostasis, most trees present some degree of stoichio-
metric flexibility in response to global changes [5, 6].

Under global change, atmospheric CO2 enrichment, 
nitrogen (N) deposition, and climate warming could stimu-
late tree growth and promote a more efficient photosynthe-
sis in many parts of the world [7–12]. These increases in 
C availability for plants have generally diluted leaf-level 
nutrient concentrations and then soil- and microbe-level 
nutrient concentrations. While other global changes, such 
as drought, may inhibit tree growth and decrease pho-
tosynthetic efficiency and may condense their nutrient 

concentrations [13, 14]. In addition, different elements 
present different levels of homeostatic control depending 
on the environmental availability, and on whether they are 
macronutrients, essential micronutrients or trace elements 
[4, 5]. A less explored, but equally important, research 
front is how global change, and in particular, climate 
change alters the elemental composition through shifts in 
tree growth, soil microbial metabolism and soil nutrient 
supplies (Fig. 1). This will have important implications for 
developing forest management practices that help forests 
adapt to new environmental conditions.

Fig. 1   Conceptual diagram of the influences of climate change on the processes that control forest elementomes of the tree, soil, and soil 
microbes
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Recent studies have shown that forest tree species and 
soil microbial communities have flexible elementomes along 
their natural ranges of distribution in response to natural 
and anthropogenic gradients [15–18]. These studies indi-
cate that accounting for stocks, fluxes, and availability of N, 
phosphorus (P), and potassium (K) as well as iron (Fe), zinc 
(Zn), and calcium (Ca) in the plant-soil system can largely 
improve the simulations of the C cycle in ecosystems, espe-
cially when simulating global change impacts. Micronutri-
ents and trace elements are essential to regulate vital plant 
functions such as photosynthesis and chlorophyll produc-
tion (magnesium [Mg], Fe), drought tolerance (K), defense 
(silicon (Si)), or reproduction (Zn) [19–22]. The decreases 
of the availability of these elements can limit the capacity of 
globally increasing C fixation by the rising concentration of 
atmospheric CO2 and N deposition over time [7, 8]. These 
improvements in the performance of simulations should be 
translated into more accurate projections and scenarios from 
Earth system models [23]. Hence, investigating the degree 
to which tree species adjust their elementomes in response 
to environmental changes is necessary to obtain knowledge 
of stoichiometric flexibility and its ecological significance. 
This should allow us to understand the role of stoichiometric 
flexibility, as opposed to stoichiometric homeostasis, and 
its relationship with ecological characteristics of species, 
such as growth strategy, capacity to adapt to environmental 
changes and nutrient-use efficiency.

In this review, we systematically summarize the new pro-
gress of peer reviewed papers which were mostly published 
in the recent 5 years. Then we provide a comprehensive syn-
thesis of the impact of global change on elementomes of 
trees (leaf, bark, stem, root), soils (mineral soil, humus layer, 
deadwood, litter) and soil microbes (microbial biomass, 
community composition, keystone microbes, and enzyme 
activities) in forest ecosystems with a particular focus on the 
impacts of elevated CO2, N deposition, drought and warm-
ing. Later, we review the insights into how forest elemen-
tomes adapt to the new environmental conditions through 
forest management (e.g., tree species selection and tree 
biodiversity management). Finally, we hope this review can 
provide new insights for our understanding of global change 
impacts on forests structure, stability and functioning.

Elevated CO₂ Impacts on Forest 
Elementomes

Overview

Rising atmospheric CO2 concentrations represent one of the 
most significant drivers of global change, profoundly influ-
encing land and ocean biogeochemical cycles and directly 
affecting the entire climate system [24, 25]. Since the 1990s, 

atmospheric CO2 levels have risen from approximately 
350 ppm to 425 ppm as of 2024 [26]. This increase has led 
to complex alterations in the ecosystem elementome, affect-
ing the elemental composition of multiple trophic levels, 
including plant tissues, animals, and soil microorganisms 
[27]. One of the key ecological hypotheses linked to elevated 
CO2 (eCO2) is the “CO2 fertilization effect” or “greening 
effect”, which posits that anthropogenic CO2 emissions 
enhance plant photosynthesis and the accumulation of car-
bohydrates [28]. Observational studies and eCO2 experi-
ments have provided substantial evidence supporting this 
hypothesis [29–33]. However, the ecosystem responses to 
eCO2 extend beyond C, affecting over 20 essential elements 
critical to life. Emerging research reveals consistent declines 
in nutrient elements, ranging from N and P to boron (B) and 
Zn [27, 34, 35]. Evidence suggests that eCO2 often leads to 
reductions in these nutrients, causing a ‘dilution effect’ pro-
duced by an increase in the concentration of C that cascades 
through ecosystems, affecting other trophic levels and bio-
geochemical cycles [27, 35]. This decline in micronutrients 
and trace elements could eventually lead to nutrient deficien-
cies propagating through the food web, entailing potential 
changes in the functioning of these organisms and the entire 
ecosystem [27]. Empirical evidence of these effects on the 
composition of elements beyond C, N, and P and their stoi-
chiometry remains, however, elusive.

Observational Evidence: Nutrient Declines in Plants

Observational studies have consistently demonstrated a 
decline in the nutrient status of ecosystems under eCO₂ 
conditions [7, 36–39]. For instance, research from Europe 
forests highlights significant decreases in forest foliar con-
centrations of key nutrients, including N, P, K, sulfur (S), 
and defined before (I changed it) Mg, with reductions of 
5%, 11%, 8%, 6%, and 7%, respectively, over the past three 
decades [17]. These declines are particularly pronounced in 
Mediterranean and temperate forests, where rising atmos-
pheric CO₂ levels are strongly correlated with decreases 
in foliar N, P, K, Mg, and S concentrations, alongside an 
increase in the N:P ratio [7]. Similarly, studies from the 
United States reveal that soil N availability has generally 
decreased since at least the 1850s, with the most signifi-
cant reductions occurring in cool, wet forests [36]. In China, 
analyses of 1,811 herbarium specimens collected from 
1920–2010 in subtropical forests revealed a 23.1% decrease 
in foliar P concentrations and a 21.2% increase in foliar N:P 
ratios, with evergreen species exhibiting larger increases in 
N:P than deciduous species [39]. The underlying drivers 
of these changes differ by functional type: for evergreens, 
eCO₂ and related factors such as N deposition and rising 
mean annual temperatures contributed to the increase in leaf 
N:P, while for deciduous species, mean annual temperature 
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and vapor pressure deficit played a key role in driving the 
observed N:P increases [39]. In order to uptake soil nutri-
ents, plants could increase root exudation of organic acids 
under eCO2 and finally facilitated P uptake from soil in 
the Eucalyptus woodlands with seedlings [40]. While in a 
mature, P-limited Eucalyptus forest, eCO2 increase roots 
associated-C gains and -C losses but decreased P availability 
and specific enzymatic activity [41].

The Value of eCO2 Experiments: Insights from FACE 
Studies

Unlike targeted experiments, observational studies often 
integrate multiple confounding factors beyond eCO2, such as 
N and S deposition, as well as climate warming. This high-
lights the critical value of controlled experiments, like Free-
Air CO2 Enrichment (FACE) studies, in isolating the specific 
effects of eCO2. The FACE technology, initially developed 
by Brookhaven National Laboratory for agricultural systems, 
has been adapted to study the effects of elevated CO2 on 
natural ecosystems. A notable prototype forest FACE system 
was tested at Duke University in 1994–1995, followed by the 
first fully operational FACE experiment in a loblolly pine 
(Pinus taeda) forest in 1996. Over time, FACE experiments 
have been implemented in diverse ecosystems worldwide, 
providing critical insights into CO2-driven changes in eco-
system elementomes.

In line with observational findings, elevated atmos-
pheric CO₂ levels reduce plant N and P concentrations 
yet simultaneously increase total N and P pools across all 
plant tissues—aboveground, belowground, and entire plant 
biomass—and in diverse ecosystems, including forests 
[42]. This pattern is consistent with the CO₂ fertilization 
hypothesis, which suggests that anthropogenic CO₂ emis-
sions enhance photosynthesis and foster the accumulation of 
carbohydrate-rich compounds (CHOs) in plants. However, 
this shift toward CHO enrichment relative to other essen-
tial elements—ranging from N and P to micronutrients like 
B and Zn—highlights a significant global drawback: as 
plant biomass expands during the Anthropocene, its nutri-
tional quality becomes increasingly diluted. Interestingly, 
elevated CO₂ concentrations have also been shown to pro-
foundly alter soil P cycling. For example, under eCO₂ con-
ditions, soil phosphatase activity increased by 19.3%, labile 
P rose by 4.2%, and total soil P declined by 10.1% [42]. 
These patterns underscore the intricate interplay between 
plant growth and nutrient cycling in eCO₂ environments, 
where phosphorus availability emerges as a key regulator 
of ecosystem responses. Notably, these results align with a 
recent meta-analysis of 97 published studies, which revealed 
overall positive response ratios of soil phosphatase activity 
under rising atmospheric CO₂ levels [43]. In mature temper-
ate forests in the UK, elevated CO₂ conditions (+ 150 ppm 

above ambient) led to increased litterfall but a decline in 
the N concentration of that litter. This pattern suggests that 
plants conserve N through enhanced resorption before leaf 
senescence [44]. A recent global synthesis of forest FACE 
experiments provides further evidence of significant shifts 
in ecosystem stoichiometry and nutrient dynamics under 
elevated CO₂ [45]. For instance, leaf and soil C:N ratios 
increased by 26% and 4%, respectively, reflecting an overall 
imbalance in C–N stoichiometry. More specifically, leaf N 
concentrations declined by 12%, while stem N concentra-
tions decreased by 7%. Concurrently, soil organic C rose by 
5%, dissolved organic C by 15%, and soil microbial biomass 
C by 21% [45]. Collectively, these findings suggest that ele-
vated CO₂ not only stimulates C cycling—enhancing forest 
productivity and increasing living biomass stocks—but also 
promotes N cycling [45]. This dual enhancement of carbon 
and nitrogen processes supports the CO₂ fertilization effect 
on forest growth and productivity, albeit accompanied by 
altered elemental balances.

Gaps and Challenges in Current Research

While eCO2 promotes plant growth, the accompanying 
declines in nutrient concentrations underscore the need for 
holistic approaches to ecosystem management. Existing 
research heavily focuses on plants, often neglecting other 
trophic levels (e.g., soil animals and microorganisms) and 
plant-soil system, and prioritizes macronutrients like C, 
N, and P over trace elements. However, ecosystems func-
tion as integrated units, and nutrient reductions in vegeta-
tion could trigger dilution effects that cascade through food 
webs, reducing biodiversity at higher trophic levels. Such 
changes pose challenges for sustainable forest management 
and disrupt biogeochemical cycles, ultimately threaten-
ing ecosystem stability and resilience. Further, accounting 
for the strength of homeostatic control, how eCO2 affects 
elementomes of coexisting individuals and species and 
individuals and species that do not coexist is still scarce. 
Such efforts are critical for understanding and mitigating the 
cascading effects of eCO2 on ecosystem functioning under 
global change.

Nitrogen Deposition Impacts on Forest 
Elementomes

Overview

N deposition can indirectly influence elementomes of trees 
by altering soil N availability and modifying soil microbial 
nutrient demand for various functions, thereby causing shifts 
in stoichiometric relationships in forest ecosystems [35, 
46, 47]. During the past decades, the much faster increase 
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of reactive N to the biosphere than inputs of P has led to 
increases in plant N:P ratios [48]. These results show the 
importance of considering the stoichiometric ratios between 
N and other nutrients when testing the effect of N deposition 
on forest C cycling [49, 50]. For example, the N addition 
increases fungal colonization in deadwood through decreas-
ing the wood C:N ratio in a subtropical forest, potentially 
increasing its decomposition rates [51, 52]. Thus, assessing 
the effects of N deposition on multiple elements holds eco-
logical significance for understanding tree growth [53], soil 
microbial metabolism [51], species coexistence [54, 55], and 
nutrient cycling [18, 56].

Differences in Responses Among Forest Types

The response of foliar elementomes to N addition varies 
among plant families and functional groups [57–60]. For 
instance, a short-term N addition experiment in the Mediter-
ranean found no changes in macro-element concentrations 
in the leaves of Quercus ilex, Phillyrea latifolia, and Arbu-
tus unedo but change the ratio of N/P and C/P in Arbutus 
unedo and N/P ratio in Phillyrea latifolia [59]. In herbaceous 
plants, N addition significantly increased K, Mg, S, man-
ganese (Mn), copper (Cu), and Zn concentrations but had 
minimal effects on woody plants [61]. Moreover, nutrient 
availability under N addition also explains distinct soil fun-
gal colonization of angiosperm versus gymnosperm wood, 
as fungal colonization was more sensitive to N availability 
in angiosperms, and it change to P availability in gymno-
sperms [52]. Meanwhile, N enrichment has a higher accel-
eration effect on wood microbial respiration and soil nutrient 
inputs in gymnosperms than in angiosperms [51, 62]. These 
differential responses among plant functional groups could 
contribute to shifts in plant community composition and 
aboveground net primary productivity [57, 63, 64].

N‑Deposition Effects Depend on Environmental 
Conditions

The extent of N input effects could vary across ecosys-
tem types, soil nutrient conditions and experiment times 
[65–67]. A meta-analysis indicated that N addition reduces 
foliar concentrations of P, K, Ca, Mg, and the Ca:Al ratio 
while increasing foliar N, Al, and the ratios of N:K, N:Ca, 
and N:Mg [61]. However, another study has been shown 
to increase plant concentrations of Mg, Mn, Cu, and Zn 
[49]. The difference may be attributed to the contribution 
of European plots that were more extensively represented 
in the database of Sardans et al. [68]. A 30-year series study 
on European beech (Fagus sylvatica) in Europe revealed that 
the relationship between foliar element concentrations and 
N deposition partially depends on the content of soil organic 
matter [69]. Zheng et al. [70] found that the pattern of soil C 

flux changed in tropical forests under long-term N deposi-
tion (insignificant changes–dramatic decline–insignificant 
changes). However, several studies have indicated that long-
term N addition decreased tree growth, soil microbial metab-
olism and soil C storage or insignificant changes depending 
on plant group, climate condition and experimental dura-
tion [66, 69, 71, 72]. Although N input could increase tree 
biomass production and soil C sequestration in the northern 
forests [9], the effects of decade-long experimental N addi-
tions decreased with increasing N loads [10].

Effects on Plant Physiology and Microbial 
Metabolism

N enhancement can significantly alter nutrient concentra-
tions and physiological processes in plants [54, 58, 65, 73]. 
There is a reduction in foliar concentrations of Ca, Mg, 
Zn, and Mn due to increased N loads [59]. It has also been 
suggested that cation-deficient plants might partially com-
pensate for nutrient deficiencies by increasing transpiration 
[16]. A two-year N addition experiment in subtropical for-
ests revealed increased foliar N concentration but decreased 
concentrations of K, Ca, and Mg, but P and Na concentra-
tions were unaffected [74]. In contrast, in a decade-long N 
addition experiment in a N-rich tropical forest, there was no 
long-term effect on foliar N or cation concentrations (e.g., 
Ca, Mg), photosynthesis, litterfall production, or annual 
plant growth rates [71]. This adaptation could enhance nutri-
ent uptake while reducing leaching of soil nutrients beyond 
the root zone, helping plants maintain nutrient balance and 
physiological processes under N enrichment [71]. For exam-
ple, N deposition would increase acid phosphatase activity 
for the uptake of soil P, but the increase was more for the 
arbuscular mycorrhizae trees than for the ectomycorrhi-
zae trees [75]. On the other hand, N addition has also been 
shown to decrease the C:N ratio of litter and accelerate plant 
C input into soil through fast microbial decomposition [50, 
51, 62]. While anthropogenic N enrichment enhances soil 
C accumulation by decreasing saprotrophs rather than ecto-
mycorrhizal fungal activity and then impedes mass loss of 
litter [76]. Thus, N deposition may influence forest elemen-
tomes through its effects on plant physiology and microbial 
metabolism, ultimately impacting ecosystem functions.

Directions for Future Research

Numerous studies have examined the variation and allo-
cation of multiple elements in plants, however, how these 
elements co-vary to adapt to the interaction of N enhance-
ment and other environmental changes remain unclear. For 
example, the long‐term N deposition could reduce water use 
efficiency in subtropical forests with low P availability [77]. 
Meanwhile, based on the biogeochemical niche hypothesis, 
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Fernández-Martínez [22] integrated elementome diversity 
with traditional species diversity to investigate changes in 
ecosystem function and stability, presenting a promising 
research avenue to study the impacts of ecosystem diversity 
and function under N deposition. Understanding how leaf 
elemental composition under reduced N deposition affects 
photosynthetic rate, root growth, root exudation, and con-
sequence soil microbial metabolism and C sequestration 
will be a critical direction for future research [78]. Further, 
research on N addition effects in forests has mostly involved 
direct understory addition of N and has ignored canopy 
interception and processing of N. The foliar N content 
of Q. variabilis and Q. acutissima was significantly higher 
with canopy addition of N than with understory addition 
of N for two years and promoted a higher root production 
[79]. These insights will provide a more comprehensive 
understanding of forest elements dynamics and ecosystem 
resilience in a changing world.

Drought Impacts on Forest Elementomes

Overview

Drought, as a major environmental stressor, disrupts biotic 
activity and nutrient mineralization, and thus nutrient avail-
ability, uptake, and distribution, which directly influence 
key physiological processes such as photosynthesis rate, 
stomatal conductance, and biomass allocation [13]. These 
disruptions often exacerbate the adverse effects of nutrient 
deficiencies, impairing water-use efficiency and reducing 
the adaptive capacity of trees [14, 80]. Understanding how 
drought affects forest elementomes is essential for predict-
ing tree growth responses to future climatic conditions and 
informing forest management strategies.

Drought‑Induced Changes in Forest Elementomes

Drought stresses lead to significant redistributions of nutri-
ents within trees, soils and soil microorganisms. This water 
stress results in decreased N and elevated C:N and C:P ratios 
in plants and microbial biomass, altering nutrient availabil-
ity and biogeochemical cycling [81, 82]. For example, in 
temperate forests, drought promotes the inorganic trans-
formation of P, reducing its bioavailability, which in turn 
limits C assimilation and protein synthesis in trees [83, 84]. 
Compared with mild drought, the responses of plant and soil 
C:N:P stoichiometry were more sensitive to moderate and 
extreme droughts, particularly in humid areas [82]. Simi-
larly, drought-induced reductions in K concentrations are 
widely observed in trees that are physiologically declining 
or approaching death, reflecting the negative effects of water 
scarcity on nutrient uptake and transport [13]. However, 

there is also a slight increase in N resorption efficiency dur-
ing drought years [85], which may represent an immediate 
adaptation of trees to drought events. Such an adaptation 
could partially compensate for the reduced N uptake by roots 
during drought [86], thereby preventing N starvation and 
deficiency in the subsequent growing season. These nutrient 
imbalances are further compounded by inhibiting microbial 
activity and reducing fine root turnover, which collectively 
diminishes nutrient mobilization in the soil [87, 88].

Growth‑Stage‑Specific Responses

The response of the elementome to drought differs signifi-
cantly across tree growth stages. Mature trees, with their 
extensive root systems, are often better equipped to access 
soil resources than saplings, enabling them to mitigate nutri-
ent deficiencies more effectively [89, 90]. Although root 
exudates typically decrease in situations such as drought, 
inoculations of bacteria could increase root exudation rates 
on Cupressus sempervirens saplings grown and mitigate 
drought-induced decrease in leaf P and Fe through increas-
ing soil phosphorous bioavailability [91]. However, the 
deeper roots of mature trees encounter nutrient limitations 
due to reduced availability of essential elements like P and K 
at greater soil depths [92]. Additionally, mature trees employ 
hydraulic lift mechanisms to draw water from deeper layers, 
supported by mycorrhizal networks that facilitate nutrient 
uptake under drought conditions [93, 94]. These adaptive 
strategies highlight the nuanced interactions between tree 
growth stages, water availability, and nutrient dynamics 
during water stress. Interestingly, during drought, the con-
centrations of some elements decline, while others increase 
or remain stable, e.g. Mn often accumulates in trees prior 
to their death, while P, Fe, and Cu concentrations typically 
decrease [95, 96]. These patterns vary with species traits, 
growth stages, and environmental conditions, underscoring 
the complexity of forest elementome in response to drought 
[97].

Impact of Drought Frequency and Intensity

The frequency and intensity of drought significantly influ-
ence nutrient dynamics within trees, particularly during leaf 
senescence. Reduced resorption efficiency of elements like 
K and P during drought can limit nutrient reserves, impair-
ing growth potential and stress tolerance in subsequent sea-
sons [85]. A five-year drought experiment, involving 0 mm 
of precipitation during each growing season for 3.5 months, 
revealed that prolonged water shortages led to potassium 
deficiency in green leaves and a tree mortality rate of 33% 
[98]. Similarly, in the Mediterranean Basin, long-term 
drought manipulation experiments highlighted a significant 
risk of nutrient leaching loss in forests, driven by severe 
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and prolonged water scarcity [20]. Moreover, the responses 
of other elements, such as Ca and N, exhibit complex pat-
terns depending on species characteristics and environmen-
tal conditions. For example, Ca absorption may increase or 
decrease under drought depending on the soil Ca condition 
[85]. In Ca-rich soils, the abundant Ca supply in the soil 
reduces the plant's need for Ca retrieval during drought [99]. 
Compensatory effects from Ca in the soil or the green leaf 
pool ensure that this reduction has no significant subsequent 
impact on the ecosystem [85]. These intricate responses 
emphasize the diverse roles of elementomes in forest struc-
tural and metabolic functions.

Future Directions

Future research should prioritize a deeper understanding of 
the multifaceted effects of drought on forest elementome 
dynamics. Investigating the synergistic interactions between 
elements and their relationship with water-use efficiency 
under drought conditions is particularly critical, especially 
when combined with the effects of elevated CO2 on plant 
water and carbon metabolism [100]. Further, detailed stud-
ies on nutrient dynamics across tree organs, such as leaves, 
bark, and roots, are also essential, as their elemental com-
position may have different response to global changes. For 
instance, leaf elementomes (e.g., K and P) are highly sensi-
tive to drought intensity, while root responses to drought 
often buffer these effects, playing a crucial role in maintain-
ing overall tree health [13]. Lastly, water availability varies 
in a short period, but elemental composition was normally 
measured once a year. This miss-match in time might be 
a cause of misinformation around elemental composition 
responses under drought, especially with more mobile 
elements such as N and K [81, 82]. Thus, a finer tempo-
ral resolution of the samples should be paid more attention 
to in future studies. Based on the above discussion, related 
insights are vital not only for advancing theoretical knowl-
edge of plant responses to drought but also for developing 
adaptive forest management and conservation strategies in 
the face of global change.

Warming Impacts on Forest Elementomes

Overview

Global warming, with an expected temperature increase of 
1.5–4 ℃ by the end of the twenty-first century [101], poses 
significant challenges for element cycling in terrestrial eco-
systems [102]. Nutrient dynamics, including essential ele-
ments such as C, N, P, K, Ca, Mg, Fe, and Zn, are influenced 
by warming through changes in plant metabolic rates, pho-
tosynthesis, soil microbial activity, and nutrient availability 

[103, 104]. This section discusses how warming affects the 
forest elementomes, focusing on its short- and long-term 
consequences, stoichiometric balances, spatial patterns, 
and knowledge gaps in understanding forest functioning of 
global-scale responses.

Short‑ and Long‑Term Effects of Warming

Warming can enhance nutrient cycling by increasing the 
decomposition of organic matter and microbial activity 
when water is available, leading to short-term increases in 
the availability of nutrients such as N and P [11, 105]. For 
instance, warming accelerates the release of available N 
(NH4

+ and NO3
−) and promotes plant N uptake [106, 107]. 

Similarly, microbial activity stimulated by warming can 
enhance organic P mineralization, increasing plant P demand 
and potentially depleting soil P over time [108].

In the long term, warming may reduce nutrient pools due 
to organic matter depletion and changes in microbial com-
munity structure [102]. Elements such as K, Ca, and Zn are 
influenced by complex interactions between plant metabolic 
demand and soil nutrient availability. While warming gener-
ally promotes photosynthesis and tree growth rate, especially 
in cold regions, increasing the demand for K, and prolonged 
warming can exacerbate K depletion by accelerating soil K 
mineralization rates [109]. Warming promotes decomposi-
tion of organic matter, releasing more acids (e.g., organic 
acids), and may lead to increased oxygen depletion, which 
puts the soil in a reducing state and affects the solubility 
and availability of Ca and Fe availability [46]. The effects of 
short- and long-term warming on forest elementomes may 
be similar but may vary with different intensities. Short-term 
warming leads to more rapid and immediate changes, while 
long-term warming may trigger more complex feedback 
mechanisms that affect soil nutrient cycling, plant growth, 
and ecosystem stability and resilience. However, few studies 
paid attention to the temporal dynamic’s effects of warming 
on the elementomes. Thus, the long- and short-term impacts 
of climate change need to be analyzed in depth in relation to 
specific ecosystem types and coping strategies.

Stoichiometric Balance and Ecosystem Stability

The stoichiometric homeostasis hypothesis suggests that 
organisms maintain stable element ratios for optimal growth, 
a mechanism critical for ecosystem structure and function 
under changing environments [110]. Warming alters element 
stoichiometry, often increasing plant N:P and C:P ratios due 
to enhanced N mineralization rates [102, 105]. Conversely, 
warming has been shown to reduce the ratios of N and P to 
alkaline cations, such as N:K, N:Ca, N:Mg, P:K, P:Ca and 
P:Mg ratio, which may depend on the warming intensity 
and duration across different ecosystem types [46]. These 
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stoichiometric shifts vary across ecosystems due to differ-
ences in vegetation physiology, nutrient uptake, and utili-
zation efficiency, underscoring the complexity of warming 
effects on nutrient cycling processes [103, 104].

Spatial Patterns of Elementome Responses 
to Warming

Across large spatial scales, the concentration of certain ele-
ments in organisms tends to decrease with increasing tem-
perature and decreasing precipitation [110, 111]. In colder 
environments, higher concentrations of N, Ca, Mg, S, Fe, 
and Zn (excluding Mn and aluminium (Al)) serve as an 
adaptive response to freezing stress, promoting metabolic 
rate and reducing freezing damage [11, 112]. Conversely, in 
warmer ecosystems, warming can significantly reduce the 
concentrations of N, P, K, Cu, Fe, and Zn and soil fertility 
due to enhanced nutrient loss [113, 114].

In arid and semi-arid regions, warming may lead to a 
reduction in soil moisture and an increase in nutrient loss, 
and the effects of warming on elementomes are more pro-
nounced [111]. In humid regions (e.g., tropical rainforests 
and temperate forests), warming may promote nutrient 
release, but the effects of warming on elemental cycling 
may be more complex due to denser biological communi-
ties and stronger nutrient return mechanisms [101]. Thus, 
the effects of warming on elementomes are not globally 
uniform, but strongly dependent on geographic location, 
ecosystem type, and specific climate-soil-vegetation inter-
actions [46]. Manipulative warming studies in temperate 
and boreal forests revealed that warming effects on nutrient 
uptake are often small and species-specific, while warmer 
forests experience more pronounced shifts in nutrient availa-
bility and nutrient dynamics [115]. These findings indicate a 
critical need for global-scale analyses to assess the effects of 
warming intensity, duration, and ecosystem type on element 
cycling processes. With a global meta-analysis, fine-root N 
increased by 13.3% on average under warmer conditions, 
whereas fine-root C:N ratio was decreased by 16.4%, and 
root C and P concentrations showed no significant responses 
to warming [116]. Meanwhile, the effect size for fine-root N 
increased while that for fine-root C:N ratio decreased with 
an increasing magnitude of warming. The effect size for 
fine-root N did not vary with warming duration, while the 
negative effects of warming on fine-root C:N ratio increased 
with increasing warming duration.

The Interaction of Warming and other Global 
Changes

Although significant progress has been made in under-
standing the dynamics of warming on forest elementomes 
at local and short-term scales, there remains a pressing need 

to unravel the broader implications of warming across eco-
systems, climate regimes, seasons, and varying levels of 
climate change intensity. Further, the effects of warming in 
interaction with other climate change drivers (e.g., CO2, N 
addition, and drought) on the elementome of forest ecosys-
tems are complex and multidimensional, with a poor under-
standing. The fertilization effects of N addition and CO2 may 
be further amplified under warming conditions, leading to 
increased plant demand for these elements, which may trig-
ger shortages or imbalances in the supply of elements in for-
est ecosystems [105]. Warming is usually accompanied by 
increased drought, which can limit water uptake by plants, 
and water limitation may lead to a decrease in the solubility 
of elements, affecting their availability in the soil and thus 
the partitioning of the elemental groups [46].

Future Directions

Future research should aim to integrate experimental data 
with large-scale observational studies to capture the multifac-
eted impacts of warming on forest elementomes. This includes 
exploring how warming-induced changes in element cycling 
affect ecosystem productivity, biodiversity, and resilience, as 
well as identifying thresholds where ecosystems transition 
to new functional states. Developing predictive models that 
link the dynamics of elements with ecosystem stability and 
services will be essential for forecasting responses to global 
warming and informing sustainable management practices. 
By advancing our understanding of these processes, we can 
better anticipate the ecological consequences of warming and 
design strategies to maintain ecosystem function and stability 
in an increasingly uncertain climate.

Improving Forest Management Practices 
under Global Change

Improving forest management practices to cope with global 
change involve monitoring and anticipating those changes 
that are going to happen in the following decades and under-
taking actions to avoid their negative consequences or taking 
advantage of potential benefits of future changes in forest 
soil fertility [117, 118]. Adopting the principles and prac-
tices of sustainable forest management can provide a sound 
basis for addressing the challenges of climate change on for-
est elementomes (Fig. 2). However, our failure to implement 
the multi-faceted components of sustainable forest manage-
ment in many forests around the world is likely to limit their 
capacity to adapt to climate change [119, 120]. As fertilizer 
practices are not common in forest ecosystems, recent stud-
ies mostly focus on the impact of tree species and tree bio-
diversity on forest elementomes.
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Tree Species Selection

Tree species significantly influence the elementomes of 
forest soils and soil microbes through various mechanisms 
[121–125]. Different trees produce plant residues (including 
leaves, fine root, branch, stem, etc.) with different elemen-
tomes and different productions, especially when they coex-
ist with similar plant biogeochemical niches [4, 68, 126]. 
This further significantly influences element inputs into soil 
and microbial metabolism [51, 52]. In broad-leaved forests, 
litter generally contains higher nutrient concentration and 
less lignin compounds and results in a faster decomposi-
tion rate compared with litter in coniferous [51, 127]. As for 
the root nutrients, deciduous species exhibited higher root 
N concentration compared with evergreen species, result-
ing in a higher root turnover for deciduous species [128]. 
This is because acquisition of nutrients should be coupled 

with aboveground C fixation to optimize plant growth [129]. 
Hence, this could increase nutrient concentrations and 
decrease C: nutrient ratios under broad-leaved forests [121]. 
This could consequently accelerate microbial metallic rate in 
broadleaved forests, because microbes should release less C 
when they get a unit of N, resulting in a higher microbial C 
use efficiency compared with coniferous forests [130, 131]. 
Meanwhile, there is a positive correlation between microbial 
C use efficiency and forest soil carbon storage [132]. Addi-
tionally, tree root exudates can also increase soil organic 
matter input, which are different among tree species [133].

The impact of tree species composition on soil elemen-
tomes may depend on the geographical location, and the 
selection of some species over others should respond to 
the purpose of the forest management [125, 134]. Com-
bined with the climate condition and soil type, each species 
has its own unique characteristics that can affect the soil 

Fig. 2   Conceptual diagram of the insights of how forest elementomes adapt to new environmental conditions through forest management
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elementomes in different ways [122, 123]. These impacts 
would depend on physiological properties, root types, and 
litter quality of trees and interactions with soil microorgan-
isms [131]. For example, the growth of coniferous trees 
is generally more limited by N, while that of broadleaved 
trees appears to be more limited by P [135]. In the case of 
deciduous species, birch trees (Betula species) are becom-
ing interesting due to their rapid growth rate and benefits on 
soil nutrient concentrations, especially on post-agricultural 
or reclaimed land. The results suggest that when planning 
to reduce CO2 emissions by increasing use of wood biomass 
for bioenergy, it is crucial that nutrient limitations for tree 
growth are considered when selecting the tree species for 
replanting forests [123, 136].

Tree Biodiversity Management

Currently, tree biodiversity has declined in ecosystems world-
wide, mostly due to global changes and land use changes [137, 
138]. Compared with monocultures, plants growing in diverse 
communities change their elemental compositions, to either 
reduce or increase N and P concentrations depending on the 
species is coexistence [139–141]. This indicates that competi-
tion for resources is an important driver of elementome plas-
ticity especially when plants have a similar biogeochemical 
niche. Although there are inconsistent results on biodiversity 
effect of tree elementomes, tree biodiversity generally pro-
motes biomass production associated with the relaxation of 
interspecific competition due to niche complementarity [137, 
142–144]. Moreover, this therefore increases litter and root 
inputs in diverse plant communities and then increases soil C 
and N stocks [143]. However, how this affects forest elemen-
tomes is uneven, especially accounting for elements in plant-
soil system beyond the C, N, and P [145]. The tree diversity 
effects on plant elementomes could translate into soil and 
microbes through litter and root inputs [43, 146–148]. Com-
pared with monocultures, concentrations of soil N, P, K, Ca, 
Mg, and microbial biomass N and C were significantly higher 
under mixed stands [146–148]. However, it is also possible 
that soil microorganisms maintain stoichiometric homeosta-
sis by either compensatory regulation of their extracellular 
enzyme production or by adjustments in microbial nutrient 
use efficiencies to cope with excess C or imbalanced nutrient 
concentrations in their energy source [149].

The study of tree diversity on forest elementomes could 
be very useful to understand and predict ecosystem function-
ing [22]. Elementomes have been proven to be very useful 
to understand both plant ecological niches and their growth. 
Elementome diversity correlates well with plant ecological 
niches and functional diversity, and so it could be expected as a 
universal metric to compare ecosystems and investigate diver-
sity–ecosystem functioning relationships [22, 150]. Mean-
while, elementome distance is a good proxy to measure the 

competition between organisms and temporal changes in plant 
and ecosystem functioning [32]. The lower elementome dis-
tance presents the stronger the competition, as species occupy 
the same niche [22]. It could also be used to monitor shifts 
in elementomes related to biodiversity changes under global 
changes (e.g. N deposition, climate warming or drought). For 
example, Fernández-Martínez [151] suggest that differences in 
elementomes could be used to understand community assem-
blages and functional diversity with different environmental 
conditions. As higher tree biodiversity broadens the biogeo-
chemical niches, it could be possible to facilitate the adapta-
tion of forests to the new environmental conditions through 
managing the balance between elementome plasticity and 
homeostatic regulation. Chen & Chen [145] indicate that plant 
biodiversity increased the C:nutrient ratios of plants and soils 
when background soil C:nutrient ratios were low but decreased 
them when the respective background ratios were high. Thus, 
forest management should pay attention to tree diversity to 
achieve the desired effects on forest elementomes and promote 
function diversity and sustainability.

Direction of Future Research

So far, there is less knowledge about the influence of forest 
management on the stoichiometry of elements beyond C, N 
and P, and how it is influenced by multiple global changes 
[145, 152]. In the future, we should study how taxonomic, 
phylogenetic, and functional richness affects the concentra-
tion, composition and stoichiometry of elements in plants 
and herbivores to understand the management-induced 
changes in forest functioning and their potential resilience 
to anthropogenic impacts [22, 153, 154]. Further, managing 
canopy structure of plantation and its tree density could also 
increase biodiversity and resources use efficiency (e.g., light, 
water and nutrients) through balancing nutrient allocation 
and use efficiency between the overstory and understory veg-
etation [155–157]. There is strong evidence that competition 
between species decreases with the distance between their 
elementomes could lead to new research and methodolo-
gies for studying community assemblages and functional 
diversity under global change. Although the niche theory, 
neutral theory, and metacommunity theory have made great 
progress in explaining the community assemblages of natu-
ral forest, the related research of community construction 
in planted forests is still scarce. In the future, more studies 
are needed to explore community assemblages, competitive 
and mutualistic interactions between species with different 
biogeochemical niches and the relationships between biodi-
versity, nutrient availability and productivity in ecosystems. 
This will help forest managers use practices to balance the 
elemental composition of forests, especially the essential 
elements of N, P, K, and improve ecosystem functioning and 
stability under global changes.
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Conclusion

This review highlights the strong influence of global changes 
(i.e., eCO2, N deposition, climate warming and droughts) on 
the elemental composition of trees, soils and soil microbes 
across various scales, with diverse spatiotemporal variation 
and underlying mechanisms. Forest elementomes not only 
potentially define how ecosystems work but also provide 
information regarding how they change their structure, 
stability and functioning as a response to global change. 
Accounting for the elemental composition, especially essen-
tial elements such as N, P and K, in the plant-soil system 
can largely improve projections of forest C cycle and help 
us facilitate the adaptation of forests to the new environmen-
tal conditions through forest management. Future research 
should integrate multi-source information to enhance the 
monitoring of forest elementomes and encourage the incor-
poration of their dynamics in future models of forest C 
cycling. In particular, we consider of vital importance to 
measure the elemental composition of trees, soils and soil 
microbes simultaneously at the ecosystem level and focus on 
the interactive effects of the multiple facets of global change 
on those elementomes in order to understand how forests 
will evolve in the future.
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